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Bipartite Experiment

* Bipartite experiments have gained increasing o
popularity /| &—
e Characteristics: ) '

. .
* Treatment assigned to treatment/ treatment units | 3
intervention units \

* Outcome measured on outcome units

* Two sets of units are connected through a o
bl pa rt Ite graph Figure 1: Hustration of a bipartite experniment withn =4 andm = 5

3 putcome units




Example |: cluster randomization

* Experiment setup

. . Intervention /A
* Units belong to different clusters Cluster Y
* Treatment units: clusters
e OQutcome units: individuals S
 Bipartite graph: cluster membership A
A
¢ Examp|62 Intervention Y.\
L . . Cluster \A
* New digital learning platform in schools on B
students’ test scores N~ &

Cluster \ 5



Example |I: hospitalization and power plant

Zigler and Papadogeorgou (2021)

* Experiment setup

* Selective noncatalytic system positive

effect on people’s health?
* Treatment units: power plants

e Outcome units: hospitalization rate at zip
code level

 Bipartite graph: zip codes connect to
upwind power plants




Casual parameter of interest

* Target parameter: total average treatment effect / global average
treatment effect

T=mn"" Z{}/I{.l:} — }E(U)'}

* Widely used in spatial experiments, bipartite experiments, and
generally settings with interference
* Of policy interest — all versus nothing comparison
* All schools use the new platform
* All power plants launch the new system



ldentification challenge and key assumption

* Each unit has 2™ potential outcomes Y;(z) = Y;(z4, ..., Z;,)
* n outcome units, m treatment units

* Potential outcome framework
e« / = (44, ..., Z,;) treatment vector

* Violation of SUTVA: Y;(Z) = Y;(Z;) no longer holds with bipartite
interference (not even makes sense anymore)

e Key assumption: generalized SUTVA



ldentification challenge and key assumption

* Generalized SUTVA: the potential outcomes of unit i depend only on the
treatment status of the groups to which it belongs

* Mathematically, Y;(z) = Y;(zs,), where
* Zs, is the subvector of treatment for §;
* §; includes the groups unit i belongs to

* NO parametric assumptions on exposure mapping and outcome model!



Preview of results

e Design-based causal inference with bipartite interference
* No parametric exposure mapping or outcome model
 Randomness purely from design
* |dentification, weighting estimators, and valid inference
e Covariate adjustment estimator that improves power



Hajek estimator

* T;: indicator that all groups are treated; C;: indicator that all groups are control

* IPW identification formula is feasible by design:
* Weighted by all-treat or all-control probability
* Can construct HT or Hajek (our focus)

* IPW weighting formula — motivates a Hajek-type estimator

e C;Y; e C;
1—11‘"5'/ 11"3' lg(l—p)'«%/” 1;(1—;:»)5”

1=

I



Consistency

* Assumptions
* Generalized SUTVA
* Bernoulli randomization
* Bounded potential outcomes and covariates
e S=0(1) and D/n = o(1)
* S = max |§;|, maximum number of groups each unit belongs to is bounded
by a constant

D denotes the maximum number of units each group contains

 allowed to be growing but at a slower rate than n
e D/n is the maximum relative size

* Under these four assumptions, T converges in probability to T



Consistency

e Assumptions in the power plant example
* New systems are randomly assigned to power plants
* Hospitalization rates are bounded
* Each city is affected by at most 5 nearest upwind power plants within 10km
 Number of cities each power plant affects is growing slower than n



Asymptotic distribution

e Additional assumption: sparse bipartite graph

Assumption 5 (Sparse bipartite graph). Define groups j; and js are connected if there exists at least one

unit belonging to both groups. Assume for any group k, the total number of groups that are connected to k
is bounded by an absolute constant B:

Z 1{j, k are connected} < B, k=1,..
jelm[\{k}

., m.

* Power plant example:

 Two power plants are connected only if there is at least one city within a certain
distance of both power plants

* Geographical network guarantees that power plants far away from each other are
not connected

 Examples that are likely to violate the assumption



Asymptotic distribution

* More notation: define three matricesfori,j = 1, ..., n,
(A)iy =p 0% =1, (Ag)iy = (1—p) %" =1, (A;)i; = 1{SiN S; # 2}.
* Asymptotic normality:

e v /2(#—7) — N(0,1) in distribution
* The asymptotic variance

vy = n? [?(1)TA117(1)+17(0)TA017’{0)+217(1)TAT17'(0)}

var from treated + var from control + covariance



Special case |: classic Bernoulli randomization

Example 4 (Classic Bernoulli randomized experiment). In classic Bernoulli randomization where the ran-

domization units are identical to the outcome units,

1, ifi=j,
SiNS; = fi=3
0, ifi#j.

Thus the asymptotic variance in equation (2) reduces to

U — ﬂ_zp(l _p)i{ﬂ[l} _ K(D)} i

p L—p

which recovers the classic result of Bernoulli randomization in Miratriz et al. (2012, Theorem 1).



Special case Il: cluster randomization

Example 5 (Cluster randomization). In a cluster randomization setting with m clusters and the treatment

assignment Zy, ~ Bern(p) for k =1,...,m, we have

1, ifi,j belong to the same group,

5NS; =

0 otherwise.

1

If we order the units according to the cluster they belong to, then

(1., 0
0 1, 1 —
A, = : A= —PA oAy = P,
P p 1-
\0 0 1,

where 1, is an ny X ni-dimensional matriz with all entries equal to 1 and ny. is the total number of units

in cluster k for k =1,...,m. Therefore, the asymptotic variance in equation (2)reduces to
= Y;(1) Y;(0) :
v, = n?p(1 —p}z [Z { — - 11_ }
k=1 LicD; p p




Variance estimation and inference

e A variance estimator:

1,7

1/2 1/27 2
. _9 T:T:(Y; — (1 Y 1) (A1 i,j _9 CC Y 0 Y (10) (Ao i,j
b = H 5 T = )6 < ) } { > =00 o) } }

Estimating var from all-treat POs Estimating var from all-control POs

 Covariance not estimable: counterfactual unobserved

 Not consistent but conservative

Asymptotically valid for inference!



When consistent variance estimator?

* Consistent variance estimator if and only if

VA)TAY(0) = {F(1) AT (1)}/2(F(0) A ¥ (0)}"/2,

* Based on the Cauchy--Schwarz inequality
* Depends on the network and potential outcomes

e Classic Bernoulli randomization
Yi(1) = 6Y;(0) for any i = 1,...,n and { > 0

* Special case: constant treatment effect

e Cluster randomization
D ieD, Yi(1) = & 2 ieD, Y;(0) forany k=1,...,m and (3 > 0

e Special case: constant cluster-specific treatment effect



Covariate adjustment

Outcome-unit-level pretreatment covariates X; are usually available

~

* Centered covariates: X;

Consider linear adjustment:

n

2B o) = Y A g T
=1 =1

-1 - C@(i’é—ﬁﬁ')ﬁ) 1 C;
P ' ; (1—p)lsil /ﬂ ;(1—p)|&|

Motivated by Lin’s estimator in complete randomized experiments

How to choose the proper coefficients?



Covariate adjustment

* Constructing “pseudo” potential outcomes with the linear adjustment
* The following CLT holds:
vn(B1, Bo) /2 {#(B1, Bo) — 7(B1, B0)} = N(0,1)

* The asymptotic variance is given by

a(Br, Bo) = n7? {{f’(l) ~ XA} A{Y (1) - X 51} +{Y(0) — X 5o} Ao{Y (0) — X o}

+2{¥ (1) - XA}AAY (0) — X0}

* |s also upper bounded by

1/2

‘UH,UB(BL%) _ ([n_z{ff(l) — XB)YTA{Y (1) - Xhﬁl}} + [n—fﬁ{ff(o) — X B} Ao{Y (0) — Xﬁo}} 1/2)2‘

* Recall formulas with zero coefficients!



Covariate adjustment

Try to reduce variance of the estimator by choosing the proper [’s

Key insight: although asymptotic variances of the estimators are not estimable,
the differences are!

We have: L(B1,80) = va(B1,B0) — vn(0,0)
PR T(xax xax) (8) L (Xavm+xavo) (s
b Bo) \ XA X XX \Bo XTAY (0) + X"A. Y (1)) \Bo

Minimizing the difference leads to most reduction of variance

Closed form solution for coefficients:

—1
Ay [X'TMX X'AX XTA Y (1) 4+ XTA,Y(0)
Bo XA, X XTAX XTAY (0) + XTA, Y (1)




Covariate adjustment

* How to build an estimator from the observed sample?

5\ [xax xax) |(XA¥()+ XA V(0)
Bo \ XA X XTAoX | [\XTAY(0) + X"A Y (1)

* The X-X part: no need to estimate as all are observed
* The X-Y part: use treated sample to plug in for Y (1) and control sample for Y (0)
* Final estimator: plug in the following estimated coefficients

)
Bo

- -~ — LT X (Y —fi) (A1) CiCiXi (Y —fo) (Ar)i,j
(XTAIX XTATX) I(Zf,j ST+ D Ty SsT

X"A X X"AoX S nz;-&ﬁ;f;;ﬁm)ai + 3 CiCiXi (Y;—fi0) (Mo)ij |
* p I J 2

(1-p)™2!




Covariate adjustment

e Establishes consistency, asymptotic normality and conservativeness of the
asymptotic variance

e Guarantees reduced asymptotic variance — improve power

* Reduction of estimated variance is not theoretically established, but showcased
in simulation study



Monte Carlo Simulation

Table 2: Finite sample performance of estimators + and 72%.

naive estimator

covariate adjustment

-

Regime T T SE(T) SE(T)

coverage

power

T

el se(72Y)  SB(7*Y)  coverage power

R1 0.221 0.223 0.059 0.086
R2 0.256 0.255 0.062 0.085
R3 0.355 0.358 0.085 0.124

99.7%
98.8%
99.6%

82.3%
92.8%
90.6%

0.223 0.055 0.080 99.5% 89.3%
0.254 0.058 0.079 98.8% 96.0%
0.358 0.082 0.119 99.5% 93.4%

Note: For each regime of data generating process, we report the true total treatment effect 7, the two point estimators,
their standard error SE(-), standard error estimator SE(-), the coverage rate of the 95% confidence interval constructed

using the conservative variance estimator, and their power.

R1: homogeneous treatment effect
R2: heterogeneous treatment effect, not depending on degrees
R3: heterogeneous treatment effect, depending on degrees



Discussion

* We discussed design-based causal inference with bipartite interference
* No outcome model or parametric exposure mapping
 Randomness purely comes from design
* |dentification, estimation and inference are possible under conditions
e Covariate adjustment improves power

* Future directions:
* More general causal parameters (combination with exposure mapping)
* Treatment unit-level covariates
* Model-assisted regression estimators?



Thank you!

Comments and suggestions are
appreciated.



Monte Carlo Simulation

e Simulation settings:
p = 0.5 n= 5000,m =1500,S =5
* Three regimes for potential outcomes

Table 1: Three regimes of data generating process

Regime Yi(1) Y:(0)
R1 N(0.25 ++47X;, 1) N(TX;, 1)
R2 N(a; +v7X;, 1) N("Xi,1)

R3 N(0.1]S;] 4+ 1.147X;, 1.5) N(y*X;,1.5)
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