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Motivating example 1: partial noncompliance in RCT
Efron and Feldman (1991 JASA)
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Motivating example 2: surrogate endpoints

▶ Gilbert and Hudgens (2008 Biometrics)
▶ HIV vaccine trial
▶ potential surrogate endpoint: immune response
▶ outcome: infection

▶ Gilbert et al (2015 JCI)
▶ herpes zoster vaccine trial
▶ potential surrogate endpoint: varicella zoster virus antibody

titers
▶ outcome: infection
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Motivating example 3: heterogeneous effects

▶ Schwartz et al. (2011 JASA): observational study
▶ effect of physical exercise on cardiovascular disease
▶ how does the effect vary across levels of BMI

▶ Alfonsi et al. (2020 Econometrica): RCT in Uganda
▶ vocational training on total earnings
▶ how does the effect vary across levels of weekly working hours
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Adjusting for post-treatment variables can be tricky

▶ Notation
▶ treatment Z : binary
▶ outcome Y
▶ post-treatment variable S

▶ Naive adjustment can be problematic even in RCT

(Y | Z = 1,S = s)− (Y | Z = 0,S = s)

= (Y1 | Z = 1, S1 = s)− (Y0 | Z = 0, S0 = s)

= (Y1 | S1 = s)− (Y0 | S0 = s)

▶ comparing potential outcomes of different units
▶ not a causal effect
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Principal stratification
proposed by Frangakis and Rubin (2002 Biometrics)

▶ Conditioning on the observed S is problematic

▶ Propose to condition on the joint potential values (S1, S0):

τ(s1, s0) = E(Y1 − Y0 | S1 = s1, S0 = s0)

▶ (S1,S0) acts as a pretreatment covariate, unaffected by
treatment

▶ τ(s1, s0) has the interpretation of subgroup effect
▶ τ(s1, s0) quantifies heterogeneous treatment effect with respect

to S
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Principal stratification: conceptually fine, practically hard

▶ Fundamental problem of causal inference
▶ never jointly observe S1 and S0
▶ τ(s1, s0) is the effect of a latent group

▶ Never jointly observe Y1 and Y0: less problematic

τ(s1, s0) = m1(s1, s0)−m0(s1, s0)

where
mz(s1, s0) = E(Yz | S1 = s1,S0 = s0)

11 / 32



A famous special case of principal stratification
Instrumental variable (IV) for RCT with noncompliance

▶ Binary S , treatment received

▶ Monotonicity S1 ≥ S0: (S1,S0) take three values

▶ Exclusion restriction: S1 = S0 ⇒ Y1 = Y0

▶ Complier average causal effect can be identified

τ(1, 0) = E(Y1 − Y0 | S1 = 1,S0 = 0)

=
E(Y | Z = 1)− E(Y | Z = 0)

E(S | Z = 1)− E(S | Z = 0)
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Difficulties of principal stratification

▶ S may not non-binary and even continuous

▶ Monotonicity S1 ≥ S0 may fail

▶ Exclusion restriction S1 = S0 =⇒ Y1 = Y0 cannot even be
invoked

▶ We are interested in general τ(s1, s0), not only τ(1, 0)

▶ Relaxing any of the above assumptions leads to difficulties:
τ(s1, s0) is not identifiable without additional assumptions
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Some other strategies for principal stratification: Part I

▶ Model-based approach:

(Z , S1,S0,Y1,Y0 | X )

▶ often with further assumptions on priors of the parameters
(Bayesian)

▶ identifiability is driven by models
▶ JASA: Zhang et al (2009), Jin and Rubin (2008), Schwartz et

al (2011)

▶ Large-sample bounds:
▶ τ(s1, s0) partially identified by the observed distribution
▶ bounds are often too wide to be informative
▶ Zhang and Rubin (2003 JEBS), Lee (2009 REStud)
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Some other strategies for principal stratification: Part II

▶ Auxiliary variables associated with latent (S1, S0) but
conditionally independent of the outcome
▶ secondary outcome, e.g. side effect (Mealli et al 2013 JASA)
▶ another vaccine response (Follman 2006 Biometrics)
▶ Ding et al (2011 JASA) and Jiang and Ding (2021 StatSci)
▶ similar to proximal inference, but has real motivations

▶ Principal ignorability: (S1,S0) (Y1,Y0) | X
▶ initially from more applied statistics research
▶ theory: Ding and Lu (2017 JRSSB) and Jiang et al (2022

JRSSB)
▶ strong and untestable assumption
▶ why do we study it? simplicity in implementation, numerically

robust
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Assumption – treatment ignorability

Z (S1,S0,Y1,Y0) | X

▶ Standard in observational studies, conditional on covariates X

▶ Ensures identification of (Sz | X ) and (Yz | X )

▶ Assumes known copula to go from (S1 | X ) and (S0 | X ) to

(s1, s0 | X ) = Cρ(1(s1 | X ),0 (s0 | X ))

▶ ensures identifiability of principal density e(s1, s0,X )
▶ another strong assumption
▶ can vary the copula parameter ρ in sensitivity analysis
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Assumption – principal ignorability

Y1 S0 | S1,X , Y0 S1 | S0,X

▶ Slightly stronger than needed in the theory; more elegant

▶ Treatment ignorability + principal ignorability:

E(Y1 | Z = 1,S1 = s1, S0 = s0,X ) = E(Y1 | Z = 1,S1 = s1,X )

= µ1(s1,X )

E(Y0 | Z = 0,S1 = s1, S0 = s0,X ) = E(Y0 | Z = 0,S0 = s,X )

= µ0(s0,X )

18 / 32



Nonparametric identifiability

▶ Based on principal density and outcome model

E(Y1 | U = s1s0) = E
{
e(s1, s0,X )

e(s1, s0)
µ1(s1,X )

}
▶ notation U = s1s0 is the unmeasured latent group

▶ Based on treatment probability and principal density

E(Y1 | U = s1s0) = lim
ϵ→0

E
{
e(s1, s0,X )

e(s1, s0)

1(s1 − ϵ ≤ S1 ≤ s1 + ϵ)

2ϵ · p1(s1,X )

ZY

π(X )

}
▶ notation π(X ) = pr(Z = 1 | X ) is the treatment probability

▶ Based on treatment probability and outcome model
▶ generally difficult: see more details in the paper
▶ possible in some special cases, e.g. S is binary
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Difficulties of nonparametric estimation

▶ We can construct nonparametric estimators for
E(Y1 | U = s1s0)

▶ E(Y1 | U = s1s0) is a local parameter

▶ Poor finite-sample performance

▶ Difficult to interpret
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Our focus: semiparametric estimation

▶ Estimation finite-dimensional parameter ηz that minimizes

ηz = argmin
η

E
[
wz(S1, S0){mz(S1, S0)− fz(S1,S0; η)}2

]
▶ notation mz(s1, s0) = E(Yz | U = s1s0)
▶ working model fz(S1,S0; η) to approximate mz(S1,S0)
▶ wz(S1,S0) user-specified weight

▶ An idea appeared in the literature, not so popular (Neugebauer
and van der Laan 2007; Kennedy et al. 2019; Ye et al. 2023).

▶ We will focus on estimating ηz
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First-order condition for ηz

▶ More explicit formula

ηz = argmin
η

∫∫
wz(s1, s0){mz(s1, s0)−fz(s1, s0; η)}2e(s1, s0)s1s0

▶ First-order condition for ηz∫∫
wz(s1, s0){mz(s1, s0)−fz(s1, s0; η)}ḟz(s1, s0; η)e(s1, s0)s1s0 = 0

▶ some implicit assumptions on the uniqueness of the solution
▶ non-degenerate Hessian
▶ not directly useful because of unknown mz(s1, s0)
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Estimation I: principal density and outcome model

▶ Define
Dz,pd+om(Y ,S ,Z ,X ; η, e, µz)

=

∫∫
wz(s1, s0){µz(sz ,X )−fz(s1, s0; η)}ḟz(s1, s0; η)e(s1, s0,X )s1s0

▶ Estimating equation

E{Dz,pd+om(Y ,S ,Z ,X ; ηz , e, µz)} = 0

▶ Two step estimation
▶ estimate nuisance parameters e, µz

▶ solve for ηz from the empirical analogue of the estimating
equation
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Estimation II: treatment probability and principal density

▶ Define
D1,tp+pd(Y , S ,Z ,X ; η, e, π)

=

∫
w1(S , s0)

e(S , s0,X )

p1(S ,X )

Z

π(X )
{Y − f1(S , s0; η)}ḟ1(S , s0; η)s0

▶ Estimating equation

E{D1,tp+pd(Y , S ,Z ,X ; η1, e, π)} = 0

▶ Two step estimation
▶ estimate nuisance parameters e, π
▶ solve for η1 from the empirical analogue of the estimating

equation

▶ Analogous results for η0
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Estimation III: Doubly robust estimation

▶ Estimating equation

E{ℓ1 + ℓ2 + ℓ3} = 0

▶ ℓ1 = D1,pd+om(Y , S ,Z ,X ; η1, e, µ1)

▶ ℓ2: correction term with details on the next page

▶ ℓ3 is similar to D1,tp+pd(Y , S ,Z ,X ; η1, e, π):

ℓ3 =

∫
w1(S , s0)

e(S , s0,X )

p1(S ,X )

Z

π(X )
{Y −µ1(S ,X )}ḟ1(S , s0; η)s0

▶ Y − µ1(S ,X ), not Y − f1(S , s0; η)
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Estimation III: Doubly robust estimation, ℓ2

▶ Define

ν1(s1, s0,X ) = w1(s1, s0){µ1(s1,X )− f1(s1, s0; η)}ḟ1(s1, s0; η)e(s1, s0,X )

ru(s1, s0,S ,X ) = 1− ċu(s1, s0,X )

c(s1, s0,X )
{1(S ≤ s1)− F1(s1,X )}

rv (s1, s0,S ,X ) = 1− ċv (s1, s0,X )

c(s1, s0,X )
{1(S ≤ s0)− F0(s0,X )}

▶ ℓ2 equals

Z

π(X )

{∫
ν1(S , s0,X )s0
p1(S ,X )

−
∫∫

ν1(s1, s0,X )ru(s1, s0,S ,X )s1s0

}
+

1− Z

1− π(X )

{∫
ν1(s1,S ,X )s1
p0(S ,X )

−
∫∫

ν1(s1, s0,X )rv (s1, s0,S ,X )s1s0

}
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Estimation III: Doubly robust estimation

▶ Where does it come from?
▶ efficient influence function (EIF)
▶ semiparametric theory (Bickel et al 1993)

▶ Theoretical properties
▶ consistent if either treatment probability or the outcome model

is correct, given that the principal density model is correct
▶ semiparametrically efficient if three models are correct

▶ Complicated in general; explicit formulas under linear working
model

fz(s1, s0; ηz) = η′zg(s1, s0)
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Application (Alfonsi et al., 2020 Econometrica)

▶ RCT among disadvantaged youth entering the labor market in
Uganda

▶ 6-month training program on labor market outcomes

▶ Y : workers’ total earnings 48 months later

▶ S : total number of hours worked in a specific week 36 months
later

▶ X : pretreatment covariates

▶ τ(s1, s0): how does the effect of the training program on total
earnings vary across hours worked?
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A simple working model

▶ Linear working model

fz(s1, s0; ηz) = βz(s1 − s0) + αz

▶ Average causal effect model

τ(s1, s0; η) = βτ (s1 − s0) + ατ

where βτ = β1 − β0 and ατ = α1 − α0

▶ ατ : effect of Z on Y even if Z does not affect S
▶ βτ : how does effect of Z on Y related to the effect of Z on S?
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Estimates under the linear working model

▶ ρ: sensitivity parameter in the copula

▶ tp+pd seems an outlier: unstable weighting estimators

eif tp+pd pd+om

ρ = 0 η̂τ 0.048 0.050 0.049
(0.008) (0.008) (0.008)

α̂τ 0.524 0.206 0.490
(0.500) (0.590) (0.515)

ρ = 0.5 η̂τ 0.042 0.173 0.050
(0.022) (0.121) (0.013)

α̂τ 0.652 0.255 0.684
(0.658) (1.794) (0.642)
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Discussion

▶ Sensitivity analysis with respect to principal ignorability

▶ Multiple post-treatment variables
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