Principal stratification with continuous post-treatment variables: nonparametric identification and semiparametric estimation

Sizhu Lu

Joint work Peng Ding and Zhichao Jiang

Department of Statistics, UC Berkeley

CUHK, Shenzhen seminar

May 29, 2024

Overview

Causal inference with post-treatment variables: motivating examples

Principal stratification for post-treatment variables

Principal stratification: difficulties and strategies

Principal ignorability with continuous post-treatment variables

Semiparametric estimation under principal ignorability

Table of Contents

Causal inference with post-treatment variables: motivating examples

Principal stratification for post-treatment variables

Principal stratification: difficulties and strategies

Principal ignorability with continuous post-treatment variables

Semiparametric estimation under principal ignorability

Motivating example 1: partial noncompliance in RCT Efron and Feldman (1991 JASA)

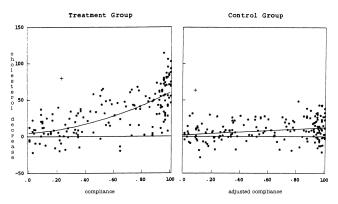


Figure 1. Stanford portion of LRC-CPPT. Left Panel: Treatment group, 164 men (after removal of outlier indicated by +); vertical axis is decrease in total cholesterol; horizontal axis is compliance (the proportion of the nominal choelstyramine actually taken). Better compliance leads to larger decreases in total cholesterol, as indicated by the quadratic regression curve. Right Panel: Placebo Control group, 171 men (after removal of outlier +); compliance has been adjusted to match the distribution of compliance in the Treatment group. There is a smaller, but still significant, dose-response relationship between compliance and cholesterol decrease, indicated by the linear regression line.

Motivating example 2: surrogate endpoints

- ► Gilbert and Hudgens (2008 Biometrics)
 - ► HIV vaccine trial
 - potential surrogate endpoint: immune response
 - outcome: infection
- ► Gilbert et al (2015 JCI)
 - herpes zoster vaccine trial
 - potential surrogate endpoint: varicella zoster virus antibody titers
 - outcome: infection

Motivating example 3: heterogeneous effects

- Schwartz et al. (2011 JASA): observational study
 - effect of physical exercise on cardiovascular disease
 - how does the effect vary across levels of BMI
- ▶ Alfonsi et al. (2020 Econometrica): RCT in Uganda
 - vocational training on total earnings
 - how does the effect vary across levels of weekly working hours

Table of Contents

Causal inference with post-treatment variables: motivating examples

Principal stratification for post-treatment variables

Principal stratification: difficulties and strategies

Principal ignorability with continuous post-treatment variables

Semiparametric estimation under principal ignorability

Adjusting for post-treatment variables can be tricky

- Notation
 - ► treatment Z: binary
 - outcome Y
 - post-treatment variable S
- Naive adjustment can be problematic even in RCT

$$(Y \mid Z = 1, S = s) - (Y \mid Z = 0, S = s)$$

$$= (Y_1 \mid Z = 1, S_1 = s) - (Y_0 \mid Z = 0, S_0 = s)$$

$$= (Y_1 \mid S_1 = s) - (Y_0 \mid S_0 = s)$$

- comparing potential outcomes of different units
- not a causal effect

Principal stratification

proposed by Frangakis and Rubin (2002 Biometrics)

- Conditioning on the observed S is problematic
- ▶ Propose to condition on the joint potential values (S_1, S_0) :

$$\tau(s_1, s_0) = \mathbb{E}(Y_1 - Y_0 \mid S_1 = s_1, S_0 = s_0)$$

- $ightharpoonup (S_1, S_0)$ acts as a pretreatment covariate, unaffected by treatment
- $ightharpoonup au(s_1,s_0)$ has the interpretation of subgroup effect
- au $au(s_1, s_0)$ quantifies heterogeneous treatment effect with respect to S

Table of Contents

Causal inference with post-treatment variables: motivating examples

Principal stratification for post-treatment variables

Principal stratification: difficulties and strategies

Principal ignorability with continuous post-treatment variables

Semiparametric estimation under principal ignorability

Principal stratification: conceptually fine, practically hard

- ► Fundamental problem of causal inference
 - ightharpoonup never jointly observe S_1 and S_0
 - $ightharpoonup au(s_1,s_0)$ is the effect of a latent group
- ▶ Never jointly observe Y_1 and Y_0 : less problematic

$$\tau(s_1, s_0) = m_1(s_1, s_0) - m_0(s_1, s_0)$$

where

$$m_z(s_1, s_0) = \mathbb{E}(Y_z \mid S_1 = s_1, S_0 = s_0)$$

A famous special case of principal stratification

Instrumental variable (IV) for RCT with noncompliance

- ▶ Binary *S*, treatment received
- ▶ Monotonicity $S_1 \ge S_0$: (S_1, S_0) take three values
- **Exclusion restriction:** $S_1 = S_0 \Rightarrow Y_1 = Y_0$
- ► Complier average causal effect can be identified

$$\tau(1,0) = \mathbb{E}(Y_1 - Y_0 \mid S_1 = 1, S_0 = 0)
= \frac{\mathbb{E}(Y \mid Z = 1) - \mathbb{E}(Y \mid Z = 0)}{\mathbb{E}(S \mid Z = 1) - \mathbb{E}(S \mid Z = 0)}$$

Difficulties of principal stratification

- ▶ S may not non-binary and even continuous
- ▶ Monotonicity $S_1 \ge S_0$ may fail
- Exclusion restriction $S_1 = S_0 \Longrightarrow Y_1 = Y_0$ cannot even be invoked
- We are interested in general $\tau(s_1, s_0)$, not only $\tau(1, 0)$
- Relaxing any of the above assumptions leads to difficulties: $\tau(s_1, s_0)$ is not identifiable without additional assumptions

Some other strategies for principal stratification: Part I

► Model-based approach:

$$(Z, S_1, S_0, Y_1, Y_0 \mid X)$$

- often with further assumptions on priors of the parameters (Bayesian)
- identifiability is driven by models
- ► JASA: Zhang et al (2009), Jin and Rubin (2008), Schwartz et al (2011)
- ► Large-sample bounds:
 - $ightharpoonup au(s_1,s_0)$ partially identified by the observed distribution
 - bounds are often too wide to be informative
 - ▶ Zhang and Rubin (2003 JEBS), Lee (2009 REStud)

Some other strategies for principal stratification: Part II

- Auxiliary variables associated with latent (S_1, S_0) but conditionally independent of the outcome
 - secondary outcome, e.g. side effect (Mealli et al 2013 JASA)
 - ▶ another vaccine response (Follman 2006 Biometrics)
 - ▶ Ding et al (2011 JASA) and Jiang and Ding (2021 StatSci)
 - similar to proximal inference, but has real motivations
- ▶ Principal ignorability: $(S_1, S_0) \perp (Y_1, Y_0) \mid X$
 - initially from more applied statistics research
 - theory: Ding and Lu (2017 JRSSB) and Jiang et al (2022 JRSSB)
 - strong and untestable assumption
 - why do we study it? simplicity in implementation, numerically robust

Table of Contents

Causal inference with post-treatment variables: motivating examples

Principal stratification for post-treatment variables

Principal stratification: difficulties and strategies

Principal ignorability with continuous post-treatment variables

Semiparametric estimation under principal ignorability

Assumption – treatment ignorability

$$Z \perp \!\!\! \perp (S_1, S_0, Y_1, Y_0) \mid X$$

- Standard in observational studies, conditional on covariates X
- ▶ Ensures identification of $(S_z \mid X)$ and $(Y_z \mid X)$
- ▶ Assumes known copula to go from $(S_1 \mid X)$ and $(S_0 \mid X)$ to

$$(s_1, s_0 \mid X) = \mathbb{C}_{\rho}({}_1(s_1 \mid X), {}_0(s_0 \mid X))$$

- ensures identifiability of principal density $e(s_1, s_0, X)$
- another strong assumption
- ightharpoonup can vary the copula parameter ho in sensitivity analysis

Assumption – principal ignorability

$$Y_1 \perp \!\!\! \perp S_0 \mid S_1, X, \quad Y_0 \perp \!\!\! \perp S_1 \mid S_0, X$$

- ▶ Slightly stronger than needed in the theory; more elegant
- Treatment ignorability + principal ignorability:

$$\mathbb{E}(Y_1 \mid Z = 1, S_1 = s_1, S_0 = s_0, X) = \mathbb{E}(Y_1 \mid Z = 1, S_1 = s_1, X)$$

$$= \mu_1(s_1, X)$$

$$\mathbb{E}(Y_0 \mid Z = 0, S_1 = s_1, S_0 = s_0, X) = \mathbb{E}(Y_0 \mid Z = 0, S_0 = s, X)$$

$$= \mu_0(s_0, X)$$

Nonparametric identifiability

Based on principal density and outcome model

$$\mathbb{E}(Y_1 \mid U = s_1 s_0) = \mathbb{E}\left\{\frac{e(s_1, s_0, X)}{e(s_1, s_0)} \mu_1(s_1, X)\right\}$$

- notation $U = s_1 s_0$ is the unmeasured latent group
- Based on treatment probability and principal density

$$\mathbb{E}(Y_1 \mid U = s_1 s_0) = \lim_{\epsilon \to 0} \mathbb{E}\left\{\frac{e(s_1, s_0, X)}{e(s_1, s_0)} \frac{1(s_1 - \epsilon \leq S_1 \leq s_1 + \epsilon)}{2\epsilon \cdot p_1(s_1, X)} \frac{ZY}{\pi(X)}\right\}$$

- notation $\pi(X) = \operatorname{pr}(Z = 1 \mid X)$ is the treatment probability
- Based on treatment probability and outcome model
 - generally difficult: see more details in the paper
 - possible in some special cases, e.g. S is binary

Difficulties of nonparametric estimation

- We can construct nonparametric estimators for $\mathbb{E}(Y_1 \mid U = s_1 s_0)$
- $ightharpoonup \mathbb{E}(Y_1\mid U=s_1s_0)$ is a local parameter
- ► Poor finite-sample performance
- ► Difficult to interpret

Our focus: semiparametric estimation

Estimation finite-dimensional parameter η_z that minimizes

$$\eta_z = \arg\min_{\eta} \mathbb{E}\left[w_z(S_1, S_0) \{m_z(S_1, S_0) - f_z(S_1, S_0; \eta)\}^2\right]$$

- ▶ notation $m_z(s_1, s_0) = \mathbb{E}(Y_z \mid U = s_1 s_0)$
- working model $f_z(S_1, S_0; \eta)$ to approximate $m_z(S_1, S_0)$
- \triangleright $w_z(S_1, S_0)$ user-specified weight
- ➤ An idea appeared in the literature, not so popular (Neugebauer and van der Laan 2007; Kennedy et al. 2019; Ye et al. 2023).
- ▶ We will focus on estimating η_z

Table of Contents

Causal inference with post-treatment variables: motivating examples

Principal stratification for post-treatment variables

Principal stratification: difficulties and strategies

Principal ignorability with continuous post-treatment variables

Semiparametric estimation under principal ignorability

First-order condition for η_z

► More explicit formula

$$\eta_z = \arg\min_{\eta} \iint w_z(s_1, s_0) \{m_z(s_1, s_0) - f_z(s_1, s_0; \eta)\}^2 e(s_1, s_0) s_1 s_0$$

First-order condition for η_z

$$\iint w_z(s_1, s_0) \{ m_z(s_1, s_0) - f_z(s_1, s_0; \eta) \} \dot{f}_z(s_1, s_0; \eta) e(s_1, s_0) s_1 s_0 = 0$$

- some implicit assumptions on the uniqueness of the solution
- non-degenerate Hessian
- ▶ not directly useful because of unknown $m_z(s_1, s_0)$

Estimation I: principal density and outcome model

Define

$$D_{z,pd+om}(Y, S, Z, X; \eta, e, \mu_z)$$

$$= \iint w_z(s_1, s_0) \{ \mu_z(s_z, X) - f_z(s_1, s_0; \eta) \} \dot{f}_z(s_1, s_0; \eta) e(s_1, s_0, X) s_1 s_0$$

Estimating equation

$$\mathbb{E}\{D_{z,\mathsf{pd}+\mathsf{om}}(Y,S,Z,X;\eta_z,e,\mu_z)\}=0$$

- ► Two step estimation
 - estimate nuisance parameters e, μ_z
 - ightharpoonup solve for η_z from the empirical analogue of the estimating equation

Estimation II: treatment probability and principal density

Define

$$D_{1,\text{tp+pd}}(Y, S, Z, X; \eta, e, \pi)$$

$$= \int w_1(S, s_0) \frac{e(S, s_0, X)}{p_1(S, X)} \frac{Z}{\pi(X)} \{Y - f_1(S, s_0; \eta)\} \dot{f}_1(S, s_0; \eta) s_0$$

Estimating equation

$$\mathbb{E}\{D_{1,\mathsf{tp+pd}}(Y,S,Z,X;\eta_1,e,\pi)\}=0$$

- ► Two step estimation
 - \triangleright estimate nuisance parameters e, π
 - ightharpoonup solve for η_1 from the empirical analogue of the estimating equation
- ▶ Analogous results for η_0

Estimation III: Doubly robust estimation

Estimating equation

$$\mathbb{E}\{\ell_1+\ell_2+\ell_3\}=0$$

- $\ell_1 = D_{1,pd+om}(Y, S, Z, X; \eta_1, e, \mu_1)$
- \blacktriangleright ℓ_2 : correction term with details on the next page
- ℓ_3 is similar to $D_{1,\text{tp+pd}}(Y,S,Z,X;\eta_1,e,\pi)$:

$$\ell_3 = \int w_1(S, s_0) \frac{e(S, s_0, X)}{p_1(S, X)} \frac{Z}{\pi(X)} \{ Y - \mu_1(S, X) \} \dot{f}_1(S, s_0; \eta) s_0$$

•
$$Y - \mu_1(S, X)$$
, not $Y - f_1(S, s_0; \eta)$

Estimation III: Doubly robust estimation, ℓ_2

Define

$$\nu_{1}(s_{1}, s_{0}, X) = w_{1}(s_{1}, s_{0})\{\mu_{1}(s_{1}, X) - f_{1}(s_{1}, s_{0}; \eta)\}\dot{f}_{1}(s_{1}, s_{0}; \eta)e(s_{1}, s_{0}, x_{0})\}$$

$$r_{u}(s_{1}, s_{0}, S, X) = 1 - \frac{\dot{c}_{u}(s_{1}, s_{0}, X)}{c(s_{1}, s_{0}, X)}\{1(S \leq s_{1}) - F_{1}(s_{1}, X)\}$$

$$r_{v}(s_{1}, s_{0}, S, X) = 1 - \frac{\dot{c}_{v}(s_{1}, s_{0}, X)}{c(s_{1}, s_{0}, X)}\{1(S \leq s_{0}) - F_{0}(s_{0}, X)\}$$

 $ightharpoonup \ell_2$ equals

$$\frac{Z}{\pi(X)} \left\{ \frac{\int \nu_1(S, s_0, X) s_0}{\rho_1(S, X)} - \iint \nu_1(s_1, s_0, X) r_u(s_1, s_0, S, X) s_1 s_0 \right\}
+ \frac{1 - Z}{1 - \pi(X)} \left\{ \frac{\int \nu_1(s_1, S, X) s_1}{\rho_0(S, X)} - \iint \nu_1(s_1, s_0, X) r_v(s_1, s_0, S, X) s_1 s_0 \right\}$$

Estimation III: Doubly robust estimation

- Where does it come from?
 - efficient influence function (EIF)
 - semiparametric theory (Bickel et al 1993)
- Theoretical properties
 - consistent if either treatment probability or the outcome model is correct, given that the principal density model is correct
 - semiparametrically efficient if three models are correct
- Complicated in general; explicit formulas under linear working model

$$f_z(s_1, s_0; \eta_z) = \eta'_z g(s_1, s_0)$$

Application (Alfonsi et al., 2020 Econometrica)

- RCT among disadvantaged youth entering the labor market in Uganda
- 6-month training program on labor market outcomes
- Y: workers' total earnings 48 months later
- S: total number of hours worked in a specific week 36 months later
- X: pretreatment covariates
- $\tau(s_1, s_0)$: how does the effect of the training program on total earnings vary across hours worked?

A simple working model

Linear working model

$$f_z(s_1, s_0; \eta_z) = \beta_z(s_1 - s_0) + \alpha_z$$

Average causal effect model

$$\tau(s_1, s_0; \eta) = \beta_\tau(s_1 - s_0) + \alpha_\tau$$

where $\beta_{\tau} = \beta_1 - \beta_0$ and $\alpha_{\tau} = \alpha_1 - \alpha_0$

- $ightharpoonup \alpha_{\tau}$: effect of Z on Y even if Z does not affect S
- \blacktriangleright β_{τ} : how does effect of Z on Y related to the effect of Z on S?

Estimates under the linear working model

- ho: sensitivity parameter in the copula
- ▶ tp+pd seems an outlier: unstable weighting estimators

		eif	tp+pd	pd+om
$\rho = 0$	$\hat{\eta}_{ au}$	0.048	0.050	0.049
		(800.0)	(800.0)	(800.0)
	$\hat{lpha}_{ au}$	0.524	0.206	0.490
		(0.500)	(0.590)	(0.515)
$\rho = 0.5$	$\hat{\eta}_{ au}$	0.042	0.173	0.050
		(0.022)	(0.121)	(0.013)
	$\hat{lpha}_{ au}$	0.652	0.255	0.684
		(0.658)	(1.794)	(0.642)

Discussion

- Sensitivity analysis with respect to principal ignorability
- ► Multiple post-treatment variables