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Abstract

The analysis of randomized controlled trials is often complicated by intercurrent events (ICEs)

– events that occur after treatment initiation and affect either the interpretation or existence of

outcome measurements. Examples include treatment discontinuation or the use of additional med-

ications. In two recent clinical trials for systemic lupus erythematosus with complications of ICEs,

we classify the ICEs into two broad categories: treatment-related (e.g., treatment discontinuation

due to adverse events or lack of efficacy) and treatment-unrelated (e.g., treatment discontinua-

tion due to external factors such as pandemics or relocation). To define a clinically meaningful

estimand, we adopt tailored strategies for each category of ICEs. For treatment-related ICEs,

which are often informative about a patient’s outcome, we use the composite variable strategy

that assigns an outcome value indicative of treatment failure. For treatment-unrelated ICEs, we

apply the hypothetical strategy, assuming their timing is conditionally independent of the outcome

given treatment and baseline covariates, and hypothesizing a scenario in which such events do not

occur. A central yet previously overlooked challenge is the presence of competing ICEs, where

the first ICE censors all subsequent ones. Despite its ubiquity in practice, this issue has not been

explicitly recognized or addressed in previous data analyses due to the lack of rigorous statisti-

cal methodology. In this paper, we propose a principled framework to formulate the estimand,
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establish its nonparametric identification and semiparametric estimation theory, and introduce

weighting, outcome regression, and doubly robust estimators. We apply our methods to analyze

the two systemic lupus erythematosus trials, demonstrating the robustness and practical utility

of the proposed framework.

Keywords: Causal inference; Clinical trial; International Council for Harmonization; Post-

treatment variable; Potential outcomes

1 Intercurrent events in randomized controlled trials

Randomized controlled trials (RCTs) are considered the gold standard for evaluating treatment

efficacy, primarily because randomization supports assumption-lean inference of the treatment effect.

However, after treatment initiation, various events, referred to as intercurrent events (ICEs), can

arise, impacting the interpretation or availability of outcome measurements and posing significant

challenges to the analysis of RCTs. Examples of ICEs include treatment discontinuation due to

adverse events or lack of efficacy, patient relocation, and the use of additional medications. Carefully

accounting for ICEs is essential to ensure the validity and reliability of the causal conclusions drawn

from RCTs.

Recognizing the critical need for clearly defined estimands in the presence of ICEs, the Interna-

tional Council for Harmonization (ICH) issued the E9(R1) Addendum (ICH E9 (R1), 2019). This

addendum introduces a structured estimand framework for clinical trials to obtain precisely defined

treatment effects that align with the clinical questions of interest. It outlines strategies for addressing

ICEs during the formulation of the clinical question and emphasizes that careful specification of the

treatment, population, and outcome variable often addresses many of the ICEs raised in discussions

between sponsors and regulators. Since its release, the ICH E9(R1) Addendum has been widely

discussed, increasingly adopted in clinical drug development, and has sparked substantial interest

in statistical research (Qu et al., 2021; Kang et al., 2022; Ionan et al., 2023; Han and Zhou, 2023;

Olarte Parra et al., 2025).

A widely accepted strategy is the treatment policy strategy (ICH E9 (R1), 2019), which includes

all participants in their originally assigned groups and uses the observed outcome values, regardless

of whether or not an ICE occurs. This approach aligns with the intention-to-treat principle and

reflects the effect of a treatment policy in real clinical settings. However, it cannot address ICEs

that are terminal events, such as death, because such events preclude the existence of the outcome
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variable.

The composite variable strategy is an alternative approach that is well-suited for handling ICEs

that are informative of the patient’s outcome such as the terminal events. This strategy incorpo-

rates the occurrence of ICEs directly into the outcome definition. Specifically, it defines a compos-

ite outcome: if no ICE occurs, the outcome of interest is used as observed; if an ICE occurs, a

pre-specified, clinically meaningful value—typically indicating treatment failure—is assigned. This

strategy is widely used in practice across various types of outcomes, including binary outcomes (e.g.,

the non-responder imputation approach), ordinal or continuous outcomes (e.g., Rosenbaum, 2006),

and time-to-event outcomes (e.g., progression-free survival).

In addition to the treatment policy and composite variable strategies, ICH E9 (R1) (2019) outlines

three additional strategies for handling ICEs. The hypothetical strategy evaluates treatment effects

under a hypothetical scenario in which the ICE would not occur. The while-on-treatment and

principal stratification strategies are also described but are less commonly used in current practice due

to their reliance on strong assumptions and the potential to introduce bias in treatment comparisons.

ICH E9 (R1) (2019) recommends using different strategies based on the specific type of ICEs involved.

While some studies have explored the use of multiple strategies (Lipkovich et al., 2020; Qu et al.,

2021), none have rigorously examined how to combine different strategies, nor have they rigorously

addressed the potential pitfalls of doing so without careful consideration. Moreover, the challenges

posed by competing ICEs remain unrecognized.

1.1 Two phase-3 trials in systemic lupus erythematosus

To rigorously examine the challenges posed by ICEs in clinical trials, we analyze data from two recent

randomized studies for systemic lupus erythematosus (Morand et al., 2023; Petri et al., 2023), in

which participants were randomly assigned to either the baricitinib treatment group or the placebo

control group. These twin trials were designed to provide substantiated evidence on the causal

treatment effect of baricitinib versus placebo.

The primary outcome is a response index measured at 52 weeks after treatment initiation. Ideally,

this outcome would be compared directly between the two treatment groups at week 52. However, 429

out of 1,535 patients (27.95%) experienced ICEs during the follow-up period, resulting in unobserved

outcome data. Figure 1 shows the types and proportions of these ICEs. During the 52-week period,
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various ICEs occurred: some patients discontinued treatment due to adverse events or lack of efficacy;

others discontinued treatment due to study withdrawal for unspecified reasons or were lost to follow-

up; and some were excluded from the study due to protocol deviations. We revisit this example in

greater detail in Section 5.

Figure 1: Pie chart showing the ICE types and proportions. The yellow solid charts represent
treatment-related ICEs, the green solid chart represents a treatment-unrelated ICE, and the blue
striped charts represent a mix of both types.

1.2 Our proposal and contribution

We propose to classify ICEs into two broad types: (1) treatment-unrelated ICEs, such as treatment

discontinuation due to relocation or COVID-19 lockdown, which are assumed to be independent of

treatment efficacy conditional on the observed covariates; and (2) treatment-related ICEs, such as

treatment discontinuation due to adverse events or lack of efficacy, use of rescue medication, and

terminating events such as death, which are often informative about a patient’s outcome.

In our application studies, the two types of ICEs were classified based on a manual review of

the detailed comments collected at the clinical sites. Figure 1 summarizes the main categories and

illustrates our classification scheme: yellow solid charts represent treatment-related ICEs, the green

solid chart represents a treatment-unrelated ICE, and the blue striped charts represent a mix of both

types. For instance, some patients withdrew from the study due to external factors such as relocation

or the COVID-19 pandemic, which were classified as treatment-unrelated. Others withdrew due to
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Figure 2: Illustration of three representative scenarios of intercurrent events in the immunology trial.
The primary outcome is measured at week 52, and the solid lines indicate the observed follow-up
period for each patient. Patient 1 experienced a treatment-unrelated ICE (represented by an arrow),
Patient 2 experienced a treatment-related ICE (represented by a diamond), and Patient 3 had no
ICE before week 52. This figure highlights the issue of competing ICEs: for instance, had Patient 1
not discontinued early and remained on treatment (illustrated by the gray dashed line), they might
have experienced a treatment-related ICE later in the follow-up period.

concerns about potential side effects, which were considered treatment-related. When the reason for

withdrawal was not clearly stated, we adopted a conservative approach and classified the ICE as

treatment-related. Both types of ICEs may occur during the follow-up period. Figure 2 depicts the

timeline and three representative scenarios from our motivating example. Before week 52, patient

1 withdrew from the study due to relocation, which is arguably unrelated to treatment. Patient 2

dropped out due to an adverse event, reflecting a treatment-related ICE. Patient 3 completed the

study through week 52, at which point the primary outcome was measured.

Both types of ICEs lead to unmeasured primary outcomes at the pre-specified landmark time

because the outcome cannot be observed or may not even be well-defined when a treatment-related

ICE occurs. To ensure the estimand is clinically interpretable and relevant, we apply different

strategies tailored to the nature of the ICE. For ICEs that are plausibly unrelated to treatment (e.g.,

treatment discontinuation due to relocation or administrative withdrawal), we apply the hypothetical

strategy, which imagines a scenario where the ICE did not occur. This enables estimation of the

treatment effect as if the patient had remained on treatment and in the study as planned, under

the assumption that the ICE time is conditionally independent of the outcome given treatment and

baseline covariates. This assumption is reasonable in settings where the ICE arises from external
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or administrative factors that are not influenced by post-randomization conditions. For example,

if a patient relocates for personal reasons unrelated to their health status or treatment response,

then, conditional on baseline characteristics and assigned treatment, the occurrence of this ICE can

be viewed as independent of the patient’s outcome. In contrast, for treatment-related ICEs (e.g.,

treatment discontinuation due to adverse events or lack of efficacy), we apply the composite variable

strategy, treating the ICE itself as an indication of treatment failure, as such events signify that

the patient is unable to continue treatment. A formal definition and discussion of this strategy are

provided in Section 3. Combining the two strategies enhances the interpretability of the estimand and

ensures it better reflects clinically relevant questions, as no single strategy can adequately address

both types of ICEs. Specifically, it would be inappropriate to classify a patient as a non-responder

if they discontinue treatment due to relocation, and it is of limited clinical relevance to consider

a hypothetical scenario in which adverse events do not occur. This approach is consistent with

regulatory guidance, which recommends applying different strategies depending on the type of ICE

involved (ICH E9 (R1), 2019; Kang et al., 2022).

However, a central yet previously overlooked challenge is the presence of competing ICEs, where

the first ICE censors all subsequent ones. For example, if a patient discontinues treatment due

to relocation, as illustrated by patient 1 in Figure 2, we only observe that no treatment-related

ICE occurred before the discontinuation. However, it remains unknown whether an adverse event

would have occurred before the final outcome measurement in the hypothetical scenario in which

the patient had not relocated and had continued treatment as planned. Although such competing

ICEs are ubiquitous in practice, this issue has not, to our knowledge, been explicitly recognized or

addressed in prior methodological work.

The central thesis of this paper is to address the challenge of competing ICEs. We begin by

developing a principled framework that clearly defines the estimand and establishes its nonparamet-

ric identification. Specifically, we derive two identification formulas, each relying on a different set

of nuisance parameters. Building on these results, we propose two basic estimators corresponding

to the two identification strategies. We then introduce an augmented estimator that combines the

two, achieving double robustness. To further enhance both robustness and efficiency, we derive the

efficient influence function (EIF) and construct an EIF-based estimator that attains the semipara-

metric efficiency bound under appropriate conditions. We apply our methods to the two systemic
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lupus erythematosus trials, both partially impacted by the COVID-19 pandemic, demonstrating the

robustness and practical utility of the proposed framework.

1.3 Organization and notation

The remainder of the paper is organized as follows. In Section 2, we present a motivating example,

introduce the basic setup of our research question, define the causal parameter of interest, and

highlight the identification challenge. In Section 3, we state the key identification assumptions,

establish the nonparametric identification of the causal parameter, and construct three estimators.

In Section 4, we derive the EIF, propose an estimator that is both doubly robust and asymptotically

efficient, and examine its asymptotic properties. In Section 5, we apply the methods to re-analyze

the two systemic lupus erythematosus trials. Finally, in Section 6, we conclude with a discussion of

two directions for future research. The supplementary material includes a simulation study and all

proofs. We also provide publicly available R code implementing all four proposed estimators.

We use the following notation. Let ∥r∥2 = {
∫
r(o)2dP (o)}1/2 denote the L2(P ) norm where

P (·) denotes the distribution of the observed data O = o. For the survival functions, let ∥r∥2 =

{
∫∫

r(t, o)2dP (o)dt}1/2 denote the L2(P ) norm. We write bn = OP (an) if bn/an is bounded in

probability and bn = oP (an) if bn/an converges to 0 in probability.

2 Setup and estimand

2.1 Setup

Let A denote the binary treatment indicator, where A = 1 corresponds to assignment to the treat-

ment group and A = 0 to the control group. The primary outcome, denoted by Y , is measured at

a pre-specified time point k. In our motivating example, Y represents the response index, and k

corresponds to 52 weeks. We adopt the potential outcomes framework, in which Y (a) denotes the

potential outcome under treatment assignment A = a, for a = 0, 1. The observed outcome is then

given by Y = Y (A) = AY (1) + (1−A)Y (0).

As discussed in Section 1, two types of ICEs may occur after treatment initiation: treatment-

unrelated ICEs and treatment-related ICEs. To formally define these, let C and T denote the

time to a treatment-unrelated ICE and the time to a treatment-related ICE, respectively. Since

both are post-treatment variables, we use C(a) and T (a) to denote their potential values under
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treatment assignment A = a, for a = 0, 1. The observed times are then given by C = C(A) =

AC(1) + (1−A)C(0) and T = T (A) = AT (1) + (1−A)T (0).

2.2 Causal estimand and challenges in identification

To address treatment-related ICEs, we define a composite potential outcome as

Y cp(a) = Y (a)1{T (a) > k}

for a = 0, 1, where the superscript denotes “composite”. This construction defines the outcome as

zero (i.e., failure) if a treatment-related ICE occurs before the outcome is measured. We then define

our causal estimand as the mean contrast:

τ = E{Y cp(1)− Y cp(0)} = E[Y (1)1{T (1) > k}]− E[Y (0)1{T (0) > k}]. (1)

This is the estimand under the composite variable strategy. It is widely used for binary outcomes to

represent treatment success or failure, where treatment-related ICEs such as adverse events or lack

of efficacy are treated as failures (ICH E9 (R1), 2019). In our motivating example, Y (a) indicates

whether a patient would be a responder at week 52 under treatment assignment A = a, had no ICE

occurred. For patients who experience a treatment-related ICE before week 52, Y (a) is unobserved.

Under the composite variable strategy, these patients are defined as non-responders.

The composite variable approach extends beyond binary outcomes and is applicable in settings

where treatment failure can be defined using a clinically meaningful threshold. Specifically, for

outcomes such as quality of life, chronic pain, physical functioning, and cognitive performance that

are typically measured on an ordinal or continuous scale, if a predefined value v may be used

to indicate treatment failure, then a composite outcome under treatment assignment A = a can

be constructed as Y (a)1{T (a) > k} + v1{T (a) ≤ k}, where the outcome retains its actual value

if no treatment-related ICE occurs before time k, and takes the failure value v otherwise. The

corresponding causal estimand can then be defined as in (1), with Y (a) replaced by Y (a) − v for

a = 0, 1. Rosenbaum (2006) discussed a similar causal parameter in settings where the ICE is death

and the outcome of interest is a measure of quality of life assessed after a fixed period.

Identifying τ in the presence of both types of ICEs presents a key methodological challenge.
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For clarity, in the remainder of this subsection, we use treatment discontinuation due to relocation

and adverse events to represent treatment-unrelated and treatment-related ICEs, respectively. The

causal estimand τ defined in (1) is based on the composite potential outcome Y cp(a), which takes

the value 0 if an adverse event occurs before the outcome measurement, i.e., when T (a) < k. If

adverse event were the only type of ICE, and treatment is randomized, τ could be identified from

observed data using the difference in means of the composite outcomes: τ = E{Y 1(T > k) | A =

1} − E{Y 1(T > k) | A = 0}. However, this formula is infeasible in the presence of treatment-

unrelated ICEs, which may occur before treatment-related ICEs and thus censor both T (a) and

Y . As illustrated in Figure 2, patient 1 discontinued due to relocation, which censored both the

occurrence of a potential adverse event and the outcome, resulting in an unobserved composite

outcome Y 1(T > k). Therefore, for patients who experience treatment-unrelated ICEs, the problem

cannot be treated as standard censoring, and one cannot näıvely impute the outcome Y under a

hypothetical scenario where the treatment-unrelated ICE did not occur. This is because such patients

may still have experienced a treatment-related ICE had they not discontinued due to relocation. In

other words, a valid identification strategy must recover the expected value of the composite outcome

Y 1(T > k), rather than the outcome Y alone.

Table 1 summarizes the observed ICE types and corresponding composite outcomes, highlighting

that competing ICEs complicate the identification of τ . When no ICE occurs, the outcome Y is

observed and equals the composite outcome since T > k. When an adverse event is observed, the

composite outcome is, by definition, 0. However, when a patient discontinues treatment due to

relocation, both the outcome Y and the time to the adverse event T are unobserved, and so is

the composite outcome. We address this challenge and present formal identification results in the

following section.

3 Nonparametric identification and basic estimators

3.1 Assumptions

We assume that the joint distribution of {Xi, Ai, Ti(1), Ti(0), Ci(1), Ci(0), Yi(1), Yi(0)} for patient i

is independently and identically distributed from a superpopulation. For notational simplicity, we

omit the subscript i when there is no confusion.

We begin by stating the following assumption on treatment assignment.
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Table 1: Summary of the observed ICE types and outcome. C is the time to treatment discontin-
uation due to relocation, T is the time to adverse event, Y is the outcome of interest, and k is the
pre-specified time point when the measurement of Y is taken. A question mark “?” indicates that
the corresponding value is unobserved.

observed ICE type (T,C, k)-relationship Y 1(T > k) composite outcome Y cp

no any type of ICE C ∧ T > k Y 1 Y

adverse event C ∧ k > T ? 0 0

treatment discontinuation due to relocation T ∧ k > C ? ? ?

Assumption 1 (Treatment assignment) We assume the following conditional independence and

overlap conditions:

(a) A ⊥⊥ {Y (a), T (a), C(a)} | X for a = 0, 1.

(b) For some constant η ∈ (0, 0.5), η < e(X) < 1− η with probability 1, where e(X) = pr(A = 1 |

X) denotes the propensity score (Rosenbaum and Rubin, 1983).

Assumption 1 holds in RCTs by design, allowing our results to apply directly to settings such

as our motivating example. However, our formulation is more general and can also accommodate

cases where treatment assignment is not completely randomized, such as in stratified randomized

experiments and observational studies.

Under Assumption 1, the causal estimand τ can be expressed as:

τ = E[E{Y 1(T > k) | A = 1, X} − E{Y 1(T > k) | A = 0, X}]

= E

{
AY 1(T > k)

e(X)
− (1−A)Y 1(T > k)

1− e(X)

}
,

which correspond to the standard outcome regression and inverse probability weighting identification

formulas, respectively, when treating the composite potential outcome Y cp(a) = Y (a)1{T (a) > k}

as the “new” outcome of interest. However, as discussed in Section 2.2, these expressions no longer

serve as feasible identification formulas in the presence of competing treatment-unrelated ICEs. This

is because Y 1(T > k) is not fully observed if a treatment-unrelated ICE occurs.

To address this challenge, we introduce additional assumptions regarding treatment-unrelated

ICEs. Specifically, we assume that the potential time of a treatment-unrelated ICE under treatment
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a is conditionally independent of the potential outcomes and the potential time to treatment-related

ICEs, given baseline covariates. This assumption is analogous to the censoring-at-random assumption

in survival analysis when treating treatment-unrelated ICEs as censoring events (Robins et al., 1994;

Tsiatis, 2006). Additionally, we require that the probability of no occurrence of treatment-unrelated

ICE by time k, given observed covariates, is strictly positive. These conditions are summarized in

the following assumption.

Assumption 2 (Treatment-unrelated ICE) We assume the following conditional independence

and positivity conditions for the time of treatment-unrelated ICE:

(a) C(a) ⊥⊥ {Y (a), T (a)} | X for a = 0, 1.

(b) For some constant ηC > 0, pr{C(a) > k | X} > ηC with probability 1.

In our motivating example, Assumption 2(a) states that the time to a treatment-unrelated ICE,

such as treatment discontinuation due to relocation, is independent of both the potential outcome

(i.e., whether a patient would be a responder at week 52) and the time to a treatment-related

ICE (e.g., an adverse event), conditional on observed baseline covariates. In other words, after

accounting for baseline covariates such as geographic region, baseline corticosteroid use, and the

physician’s global assessment score, the decision to discontinue treatment due to relocation is as-

sumed to be unrelated to the patient’s potential outcomes or potential timing of adverse events.

Assumption 2(b) requires that every patient has a strictly positive probability of not experiencing

a treatment-unrelated ICE before time k, given their covariates. This standard positivity condition

rules out deterministic treatment-unrelated ICE happening in any subpopulation and is reasonable

in our application.

3.2 Two identification formulas

Using the composite variable strategy to handle treatment-related ICEs, recall that we define the

causal estimand as in (1). Under Assumptions 1 and 2, we show that the estimand τ is nonpara-

metrically identifiable and present two identification formulas in the following theorem.

Theorem 1 (Nonparametric identification of τ) Under Assumptions 1 and 2, τ is nonpara-
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metrically identified by two distinct formulas. First,

τ = E {µ1(X)S1(k | X)− µ0(X)S0(k | X)} , (2)

where for a = 0, 1, µa(X) = E(Y | T ∧ C > k,X,A = a) is the conditional mean of observed

outcome among those with no ICE and A = a, and Sa(t | X) = pr(T > t | X,A = a) is the

conditional survival function of treatment-related ICE in treatment arm a. Second,

τ = E

[
AY 1(T ∧ C > k)

e(X)G1(k | X)
− (1−A)Y 1(T ∧ C > k)

{1− e(X)}G0(k | X)

]
, (3)

where e(X) = pr(A = 1 | X) is the propensity score and for a = 0, 1, Ga(t | X) = pr(C > t | X,A =

a) is the conditional survival function of treatment-unrelated ICE in treatment arm a.

The first identification formula (2) expresses τ using a standard outcome regression approach.

It decomposes the conditional expectation of the composite outcome given covariates and treatment

as E{Y I(T > k) | X,A} = E(Y | T > k,X,A)P (T > k | X,A) = E(Y | T ∧ C > k,X,A)P (T > k |

X,A). This formulation models the conditional mean outcome Y among individuals who do not have

any ICE by time k, and weights it by the probability of not experiencing a treatment-related ICE by

that time. The second identification formula (3) provides an alternative identification strategy based

on inverse probability weighting. It identifies τ by reweighting observed outcomes among individuals

who remain free of ICEs up to time k, separately within each treatment arm. The weights adjust for

the different probability of observing the composite outcome and consist of two components: e(X),

which accounts for differences in treatment assignment probabilities, and Ga(k | X), which adjusts

for the probability of remaining free of treatment-unrelated ICEs up to time k within each treatment

group. Effectively, individuals with a lower probability of being observed are up-weighted, while those

with a higher probability are down-weighted, ensuring an unbiased estimate of the treatment effect.

Both equations (2) and (3) are valid identification formulas, as the nuisance parameters involved

are either functions of observed data or identifiable from observed data. Specifically, the propensity

score e(X) and the conditional outcome model µa(X) are functions of observed data. Although the

survival functions for both types of ICEs, Sa(t | X) for treatment-related ICEs and Ga(t | X) for

treatment-unrelated ICEs, are not direct functions of the observed data, they are identifiable under
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standard results in survival analysis with censoring at random (Robins and Rotnitzky, 1992; Robins

and Finkelstein, 2000; Ebrahimi et al., 2003). For example, S1(t | X) = pr(T > t | X,A = 1) for

t ≤ k can be estimated using data from the treatment group by viewing T ∧ C ∧ k as the observed

event time and using 1(C ∧ k ≥ T ) as the event indicator for the treatment-related ICE. Estimation

can then proceed using parametric or semiparametric methods, such as the Cox proportional hazards

model (Cox, 1972), or more flexible approaches (Wolock et al., 2024). A similar approach can be

used to estimate G1(t | X) by switching the roles of T and C. The corresponding functions S0(t | X)

and G0(t | X) can be estimated in the same way using data from the control group.

3.3 Two basic estimators

The identification formulas (2) and (3) in Theorem 1 motivate two basic estimators, each relying on

estimates of the corresponding nuisance functions. Let Ŝa(t | X) and Ĝa(t | X) denote the fitted

survival models for treatment-related and treatment-unrelated ICEs, respectively, for t ≤ k and

a = 0, 1. Let µ̂a(X) be the fitted outcome regression model for each treatment arm, and ê(X) be

the fitted propensity score model. By substituting these fitted values into the identification formulas

and taking empirical analogs, we obtain the following two estimators:

τ̂out = n−1
n∑

i=1

µ̂1(Xi)Ŝ1(k | Xi)− n−1
n∑

i=1

µ̂0(Xi)Ŝ0(k | Xi),

τ̂ ipw = n−1
n∑

i=1

AiYi1(Ti ∧ Ci > k)

ê(Xi)Ĝ1(k | Xi)
− n−1

n∑
i=1

(1−Ai)Yi1(Ti ∧ Ci > k)

{1− ê(Xi)} Ĝ0(k | Xi)
.

The outcome regression estimator τ̂out is consistent if both µ̂a(X) and Ŝa(k | X) are consistently

estimated. The inverse probability weighting estimator τ̂ ipw is consistent if both ê(X) and Ĝa(k | X)

are consistently estimated.

3.4 An augmented estimator

By combining the two identification formulas (2) and (3), we derive the following augmented iden-

tification formula:

τ = E

{
AY 1(T ∧ C > k)

e(X)G1(k | X)
− A− e(X)

e(X)
µ1(X)S1(k | X)

}
−E

[
(1−A)Y 1(T ∧ C > k)

{1− e(X)}G0(k | X)
− e(X)−A

1− e(X)
µ0(X)S0(k | X)

]
. (4)
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Equation (4) can be interpreted both as a modified form of the outcome regression identification

formula (2), and as an augmented form of the weighting identification formula in (3). Under the

true model at the population level, the correction terms have mean 0, and thus (4) holds by con-

struction. However, it becomes meaningful in the presence of possible model misspecification, where

the augmentation plays a crucial role in improving robustness.

Based on (4), we construct an estimator that augments the weighting estimator τ̂ ipw using the

estimated outcome models,

τ̂aug = τ̂ ipw − n−1
n∑

i=1

{
Ai − ê(Xi)

ê(Xi)
µ̂1(Xi)Ŝ1(k | Xi) +

Ai − ê(Xi)

1− ê(Xi)
µ̂0(Xi)Ŝ0(k | Xi)

}
.

It has a similar mathematical form to the classic augmented inverse probability weighting estimator

for the average treatment effect (Bang and Robins, 2005). We provide the properties of τ̂aug in the

following Proposition 1.

Proposition 1 (Double robustness of τ̂aug) Suppose Assumptions 1 and 2 hold, and assume

that Ga(k | X) is correctly specified for a = 0, 1. τ̂aug is a consistent estimator for τ if either e(X)

is correct, or both µa(X) and Sa(k | X) are correct for a = 0, 1.

Proposition 1 shows that the consistency of τ̂aug depends on correctly specifying Ga(k | X) for

a = 0, 1, while it remains robust to misspecification of the propensity score e(X). To build intuition,

from the perspective of semiparametric efficiency theory, Equation (4) can be viewed as a projection

of the weighting identification formula (3) onto the nuisance tangent space of the propensity score

model A | X. However, because it is not further projected onto the nuisance tangent space of the

Ga(k | X) model, the resulting estimator does not retain robustness to misspecification of Ga(k | X).

We will further address the issue in Section 4, where we introduce an alternative estimator that is

robust to the misspecification of both models.

The augmented estimator τ̂aug dominates the weighting estimator τ̂ ipw in terms of robustness.

The consistency of τ̂aug is contingent on less restrictive requirements on nuisance parameter estima-

tion in the sense that τ̂aug is consistent whenever τ̂ ipw is. Consistency of τ̂aug requires the correct

specification of the survival function for treatment-unrelated ICE Ga(k | X) for a = 0, 1. Given that

Ga(k | X) is correctly modeled, τ̂aug is doubly robust because it is consistent if either the propensity

score model is correct, or the outcome regression and the survival model for treatment-related ICEs
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are both correct. There is no clear dominance between τ̂aug and τ̂out as they require consistent

estimation of different sets of nuisance parameters. For all three estimators τ̂out, τ̂ ipw, and τ̂aug, we

can construct variance estimators using nonparametric bootstrap.

4 A semiparametrically efficient and doubly robust estimator

The augmented weighting estimator τ̂aug improves robustness of τ̂ ipw. However, it is not robust

to the misspecification of the survival function for treatment-unrelated ICE, nor does it achieve

the semiparametric efficiency bound. In this section, we show that τ̂aug can be further improved.

We derive the semiparametric efficient influence function (EIF) for τ to learn the best asymptotic

efficiency a consistent estimator of τ can achieve and propose an asymptotically efficient and doubly

robust estimator based on the EIF.

We first describe the full and observed data structures in our setting and introduce some addi-

tional notation. Ideally, we want to observe the full data (X,Y cp(1), Y cp(0)). The missingness of the

full data comes from two strings. First, for a given treatment arm a = 0, 1, the treatment-unrelated

ICE time C(a) censors the full data because Y cp(a) is only observable if C(a) ≥ {T (a)∧ k}. Within

each treatment group, we do not observe the full data due to censoring and only observe

(∆(a) = 1{C(a) ≥ T (a) ∧ k}, T̃ (a) = C(a) ∧ T (a) ∧ k,∆(a)Y cp(a)).

Second, the treatment assignment generates another level of missingness, because, for each obser-

vation, we never simultaneously observe both composite potential outcomes {Y cp(1), Y cp(0)} even

without censoring. Therefore, the observed data is

O = (A,∆ = ∆(A), T̃ = T̃ (A),∆Y cp = ∆(A)Y cp(A)).

4.1 EIF and EIF-based estimator

In the following theorem, we provide the EIF for τ .

Theorem 2 (EIF for τ) Under the nonparametric model, the EIF for µ1 is

D1(O) =
A

e(X)

{
Y 1(T ∧ C > k)

G1(k | X)
+ µ1(X)S1(k | X)

∫ T̃

0

dMG1(t)

S1(t | X)G1(t | X)

}
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−A− e(X)

e(X)
µ1(X)S1(k | X)− µ1, (5)

the EIF for µ0 is

D0(O) =
1−A

1− e(X)

{
Y 1(T ∧ C > k)

G0(k | X)
+ µ0(X)S0(k | X)

∫ T̃

0

dMG0(t)

S0(t | X)G0(t | X)

}

−e(X)−A

1− e(X)
µ0(X)S0(k | X)− µ0, (6)

and thus, the EIF for τ is Dτ (O) = D1(O) −D0(O), where dMGa(t) = 1(C ∈ dt,∆ = 0) − 1(T̃ ≥

t)dΛa(t | X) with Λa(t | X) denoting the conditional cumulative hazard function for the treatment-

unrelated ICE C in the treatment group A = a for a = 0, 1.

The MGa(t) in the EIF is the martingale constructed from the censoring counting process. Intu-

itively, 1(C ∈ dt,∆ = 0) is the actual observed increment in the censoring counting process at time

t, which records whether a censoring event has occurred, while 1(T̃ ≥ t)dΛa(t | X) represents the

expected increment in the counting process, given the history up to time t. The martingale MGa(t)

captures the difference between the actual observed events and their expected occurrences. The EIF

implies another identification formula for τ by the property that E{Dτ (O)} = 0. Rearranging terms,

we have

τ = E

{
AY 1(T ∧ C > k)

e(X)G1(k | X)
− A− e(X)

e(X)
µ1(X)S1(k | X)

}
−E

[
(1−A)Y 1(T ∧ C > k)

{1− e(X)}G0(k | X)
− e(X)−A

1− e(X)
µ0(X)S0(k | X)

]
+E

[
A

e(X)
µ1(X)S1(k | X)

∫ T̃

0

dMG1(t)

S1(t | X)G1(t | X)

]

−E

[
1−A

1− e(X)
µ0(X)S0(k | X)

∫ T̃

0

dMG0(t)

S0(t | X)G0(t | X)

]
, (7)

where the first two lines are the same as in the augmented weighting identification formula (4).

Intuitively, we further augment (4) by the last two terms in (7) to achieve robustness to misspec-

ification of the survival function for treatment-unrelated ICE. These augmentation terms are zero

at the population level under true Ga(t | X). However, their empirical counterparts may deviate

significantly from zero, providing diagnostic insight into possible misspecification of Ga(t | X).
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The EIFs in Theorem 2 motivate the following estimator for τ ,

τ̂ eif = τ̂aug + n−1
n∑

i=1

Ai

ê(Xi)
µ̂1(Xi)Ŝ1(k | Xi)

∫ T̃i

0

dMĜ1
(t)

Ŝ1(t | Xi)Ĝ1(t | Xi)

−n−1
n∑

i=1

1−Ai

1− ê(Xi)
µ̂0(Xi)Ŝ0(k | Xi)

∫ T̃i

0

dMĜ0
(t)

Ŝ0(t | Xi)Ĝ0(t | Xi)
.

To gain insights, consider the first augmentation term in τ̂ eif. Since the observed time points are

discrete, the integral for observation i can be estimated as follows:

∫ T̃i

0

dMĜ1
(t)

Ŝ1(t | Xi)Ĝ1(t | Xi)
=

∑
t≤T̃i

1(∆i = 0, Ci = t)− λ̂1(t | Xi)

Ŝ1(t | Xi)Ĝ1(t | Xi)

= −
∑
t≤T̃i

λ̂1(t | Xi)

Ŝ1(t | Xi)Ĝ1(t | Xi)
+

1(∆i = 0)

Ŝ1(T̃i | Xi)Ĝ1(T̃i | Xi)
, (8)

where λ̂1(t | Xi) denotes the estimated conditional hazard function for the treatment-unrelated ICE

at time t given covariates Xi. In (8), the first term is a sum of the ratio −λ̂1(t | Xi)/{Ŝ1(t | Xi)Ĝ1(t |

Xi)}, where the summation is over all observed event time points before T̃i. The second term is 0 for

individuals who are not right-censored by the treatment-unrelated ICE, and is 1/{Ŝ1(T̃i | Xi)Ĝ1(T̃i |

Xi)} for observations with a treatment-unrelated ICE occurred at time T̃i.

To construct the estimator τ̂ eif, we need to estimate the following nuisance parameters: the

propensity score model e(X), the outcome model µa(X) for a = 0, 1, and the survival functions for

treatment-related and treatment-unrelated ICEs Sa(t | X) and Ga(t | X), respectively, for t ≤ k

and a = 0, 1. Importantly, as shown in Theorem 3, the consistency of τ̂ eif does not require correct

specification of all four nuisance parameters.

4.2 Asymptotic properties of the EIF-based estimator

We next discuss the asymptotic properties of τ̂ eif. We first introduce additional notation. For t ≤ k

and a = 0, 1, let e∗, G∗
a, µ

∗
a, and S∗

a denote the probability limit of the estimated nuisance functions

ê, Ĝa, µ̂a, Ŝa, respectively, i.e., ∥ê − e∗∥ = oP (1), ∥Ĝa − G∗
a∥ = oP (1), ∥µ̂a − µ∗

a∥ = oP (1), and

∥Ŝa − S∗
a∥ = oP (1). If a given nuisance model is correctly specified, its corresponding limit equals

the true function. For example, if the propensity score model is consistent, then e∗ = e, and similar

results hold for the other three nuisance components.
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In the following theorem, we provide the double robustness of the EIF-based estimator τ̂ eif.

Theorem 3 (Double robustness of τ̂ eif) Under Assumptions 1 and 2, τ̂ eif is doubly robust in

the sense that it is consistent for τ if either {e∗(X) = e(X), G∗
a(t | X) = Ga(t | X)} or {µ∗

a(X) =

µa(X), S∗
a(t | X) = Sa(t | X)} for t ≤ k and a = 0, 1.

Theorem 3 shows that τ̂ eif is consistent if at least one of the following two sets of nuisance

parameters are consistently estimated: (1) the outcome model µa(X) and the survival function

for the treatment-related ICE Sa(t | X); (2) the propensity score model e(X) and the survival

function for the treatment-unrelated ICE Ga(t | X), for t ≤ k and a = 0, 1. When our data is

from an RCT, i.e., the propensity score e(X) is known by design, so ê(X) can be correctly specified.

Consequently, the EIF-based estimator τ̂ eif is a consistent estimator for τ if either Ga(t | X) is

consistently estimated, or both µa(X) and Sa(t | X) are consistently estimated, for t ≤ k and

a = 0, 1.

To conduct statistical inference, we provide the asymptotic distribution of τ̂ eif. We first introduce

three technical conditions and then state the asymptotic result in a theorem.

Assumption 3 (Consistency of the nuisance parameters) Assume that either {e∗(X) = e(X), G∗
a(t |

X) = Ga(t | X)} or {µ∗
a(X) = µa(X), S∗

a(t | X) = Sa(t | X)} for t ≤ k and a = 0, 1 is satisfied.

Assumption 4 (Donsker Condition) The class of functions {(e,Ga, µa, Sa) : ||e−e∗|| < δ, ||Ga−

G∗
a|| < δ, ||µa − µ∗

a|| < δ, ||Sa − S∗
a|| < δ} is Donsker for some δ > 0.

Assumption 5 (Convergence rates of nuisance parameters) The convergence rate of the

nuisance parameters estimation satisfies {||ê−e∗||+||Ĝa−G∗
a||}{||µ̂a−µ∗

a||+||Ŝa−S∗
a||} = oP (n

−1/2)

for a = 0, 1.

Assumption 3 requires either the propensity score and survival function of the treatment-unrelated

ICE or the outcome and survival function of the treatment-related ICE to be consistently estimated.

It guarantees the consistency of τ̂ eif. Assumption 4 imposes restrictions on the nuisance model com-

plexity and is a standard regularity condition (Van der Vaart, 2000). We can also employ flexible

machine learning models with cross-fitting techniques in the estimation of nuisance parameters to

relax the Donsker condition (Pfanzagl and Wefelmeyer, 1985; Klaassen, 1987; Zheng and van der
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Laan, 2011; Chernozhukov et al., 2018). Finally, Assumption 5 imposes additional restrictions on

the rate of convergence of the nuisance parameters, in addition to all of them being consistently

estimated.

Theorem 4 (Asymptotic distribution) Under Assumptions 1– 5, the EIF-based estimator sat-

isfies

n1/2(τ̂ eif − τ) = n−1/2
n∑

i=1

Dτ (Oi) + oP (1).

The estimator τ̂ eif is a consistent and asymptotically Normal estimator of τ with asymptotic variance

equal to E{D2
τ (O)}, thus achieving the semiparametric efficiency bound.

Therefore, we can construct the variance estimator based on the semiparametric efficiency bound

by taking the empirical analog of the plug-in estimation n−1
∑n

i=1 D̂
2
τ (Oi). We can also use a non-

parametric bootstrap to estimate variance and conduct statistical inference if the nuisance estimators

satisfy certain smoothness conditions.

4.3 Comparing the estimators

In real data analysis, we recommend implementing and comparing all four proposed estimators to

assess whether they provide coherent scientific implications. Theoretical comparisons among these

estimators primarily focus on two key dimensions: robustness to nuisance model misspecification and

asymptotic efficiency. In practice, examining how the point estimates differ across these estimators

can provide insight into the presence of nuisance model misspecification. Specifically, certain pairwise

differences among the estimators can serve as informal diagnostics. For example, if e(X) is correctly

specified, the difference between τ̂ ipw and τ̂aug should converge to zero. Similarly, if µa(X) and

Sa(k | X) are correctly specified, the difference between τ̂out and τ̂aug should converge to zero.

Finally, if Ga(t | X) is correctly specified, the difference between τ̂ eif and τ̂aug should converge to

zero. Therefore, when implementing all four estimators in practice, the observed difference among

them may serve as an informal diagnostic tool to detect possible nuisance model misspecification.

We provide more details in Section A.1 in the supplementary material.

Among the four estimators, a key comparison lies between the EIF-based estimator τ̂ eif with

the augmented weighting estimator τ̂aug. On the one hand, τ̂ eif is more robust and asymptotically

efficient: it allows for misspecification of the censoring model C | A,X and it achieves the semi-
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parametric efficiency bound under correct nuisance specification. Continuing the intuition discussed

in Section 3.4, τ̂aug only orthogonalizes the part corresponding to A | X but not C | X,A, making

it robust only to misspecification of the A | X model, not the C | X,A model. In contrast, τ̂ eif

accounts for both possible sources of misspecification, leading to greater robustness and efficiency.

On the other hand, τ̂aug is more straightforward to implement in practice, as it only requires the

estimation of Sa(k | X) and Ga(k | X) at time k for a = 0, 1, while τ̂ eif requires consistent estimation

of the entire survival curves Sa(t | X) and Ga(t | X) for t ≤ k and a = 0, 1. We consider the choice

between τ̂ eif and τ̂aug as a trade-off between implementation simplicity and robustness and efficiency

of the estimators.

Finally, we note the theoretical possibility of applying a martingale-based correction to the basic

weighting estimator τ̂ ipw, in a manner analogous to the correction in the EIF-based estimator τ̂ eif

compared with τ̂aug. Such a corrected estimator would be robust to misspecification of Ga(t |

X). However, it remains less attractive in practice: it is neither robust to misspecification of the

propensity score nor asymptotically efficient, and it lacks the implementation simplicity of τ̂aug. For

these reasons, we do not recommend it, though we include its explicit form in Section A.2 of the

supplementary material only for theoretical completeness.

4.4 Simulation results

We conduct Monte Carlo simulations to evaluate the finite-sample performance of four estimators

under various combinations of correctly specified and misspecified nuisance models. Consistent with

our theory, τ̂ eif demonstrates the greatest robustness across all misspecification scenarios, maintain-

ing low bias and valid coverage even when multiple nuisance models are incorrect. We relegate the

detailed results to Section B in the supplementary material.

5 Analyzing two phase-3 trials

5.1 Data analysis

In this section, we re-analyze data from two trials on systemic lupus erythematosus (Morand et al.,

2023; Petri et al., 2023). Both trials are double-blinded, randomized, placebo-controlled phase-3

trials. There are three treatment arms: 2mg baritinib, 4mg baritinib, and placebo. The primary

outcome in both studies is the Systemic lupus erythematosus Responder Index 4 (SRI4) at week 52, a
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binary composite endpoint that reflects clinical response. A participant is classified as a responder if

they show a predefined improvement in disease activity, without overall worsening or the emergence

of significant disease activity in new organ systems. Baseline covariates used for model fitting include

geographic region, baseline corticosteroid use, and the Physician’s Global Assessment score measured

at baseline.

A substantial proportion of participants in both trials experienced ICEs: 218 out of 760 in one

trial and 211 out of 775 in the other. As described in Section 1.2, we classify these ICEs into two

categories: treatment-related ICEs (82.6% and 84.4% in the two trials, respectively) and treatment-

unrelated ICEs (17.4% and 15.6%). We conduct separate comparisons of the 2mg and 4mg baricitinib

treatment arms versus the placebo group. For each comparison, we apply all four estimators: τ̂out,

τ̂ ipw, τ̂aug, and τ̂ eif. We use logistic regression to estimate the propensity score and outcome models,

and use Cox proportional hazards regression to separately estimate the survival functions for the

two types of ICEs. We conduct variance estimation and inference using a nonparametric bootstrap

with 500 replicates. Table 2 presents the resulting point estimates, their estimated standard errors,

and corresponding p-values.

Table 2: Treatment effect of Baricitinib on the primary outcome SRI4. The first four columns report
the results of Trial 1 and the last four columns report those of Trial 2. The first three rows report the
point estimators, standard errors, and the p-value of the composite outcome average treatment effect
corresponding to the 2mg treatment arm, and the last three rows report those of the 4mg treatment
arm. For each trial and each treatment arm, we report the results based on all four estimators.

Trial 1 (Petri et al., 2023) Trial 2 (Morand et al., 2023)

τ̂out τ̂ ipw τ̂aug τ̂ eif τ̂out τ̂ ipw τ̂aug τ̂ eif

2mg point 0.030 0.029 0.026 0.026 0.019 0.019 0.022 0.022

se 0.042 0.043 0.042 0.043 0.042 0.043 0.043 0.042

p-value 0.479 0.504 0.534 0.540 0.643 0.662 0.602 0.606

4mg point 0.113 0.120 0.115 0.113 −0.002 −0.002 −0.002 −0.002

se 0.046 0.046 0.046 0.046 0.042 0.042 0.042 0.042

p-value 0.013 0.008 0.012 0.013 0.961 0.962 0.966 0.969
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5.2 Interpretation of the statistical results

Across both trials and treatment arms, the point estimates and p-values from the four methods are

generally consistent. Our results suggest a statistically significant positive effect of 4mg baricitinib

on the SRI4 outcome in Trial 1, while in Trial 2, the effect is not significant and the point estimate

is slightly negative. No significant treatment effect is observed for the 2 mg baricitinib dose in either

trial. As discussed in Section 4.3, though not a formal statistical test, qualitatively, the robustness of

estimates across the four estimators in Table 2 provides empirical evidence that our nuisance models

may not be severely misspecified.

5.3 Comparison with ad-hoc methods

Next, we use the two commonly used ad-hoc methods and compare them with our proposed methods.

The first method is the non-responder imputation method that assigns an outcome as 0 whenever

an ICE occurs. It is equivalent to using the composite outcome strategy that treats all ICEs as

treatment-related, leading to a composite outcome equal to 0. The second method naively applies a

hypothetical strategy to all ICEs, assuming they are independent of potential outcomes conditional

on observed covariates.

Table 3 reports the estimated treatment effect of both treatment arms across the two trials using

the inverse probability weighting estimator. The non-responder imputation method generally yields

slightly smaller effect estimates than our proposed methods, although the differences are modest,

likely due to the relatively low proportion of treatment-unrelated ICEs in both trials. Neverthe-

less, our proposed approach targets a clinically more meaningful causal estimand. The second ad

hoc method naively applies the hypothetical strategy to all ICEs, assuming that their occurrence is

conditionally independent of the potential outcomes given baseline covariates. This assumption is

untestable and likely violated in practice. For example, treatment discontinuation due to adverse

events or lack of efficacy is plausibly related to a patient’s potential outcome. As shown in Table 3,

this method produces treatment effect estimates that differ substantially from those obtained using

our proposed approach, potentially leading to misleading clinical conclusions. These empirical find-

ings are consistent with the large-sample bias observed in the simulation study and underscore the

importance of using appropriate strategies tailored to different types of ICEs.
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Table 3: Treatment effect of Baricitinib on the primary outcome SRI4 using non-responder imputa-
tion (NRI) and hypothetical strategy (HS). The first two columns report the results of Trial 1 and the
last two columns report those of Trial 2. The first three rows report the point estimators, standard
errors, and the p-value of the estimated treatment effect corresponding to the 2mg treatment arm,
and the last three rows report those of the 4mg treatment arm. For each trial and each treatment
arm, we report the results based on the inverse probability-weighting estimator.

Trial 1 Trial 2

NRI HS NRI HS

2mg point 0.039 0.011 0.010 0.022

se 0.043 0.049 0.042 0.050

p-value 0.362 0.815 0.817 0.654

4mg point 0.093 0.073 −0.008 0.044

se 0.044 0.050 0.041 0.051

p-value 0.036 0.147 0.847 0.382

6 Future directions

In this study, we address the challenges posed by ICEs in RCTs by proposing methods to handle

competing ICEs. We classify ICEs into treatment-related and treatment-unrelated events and apply

different strategies to identify a clinically meaningful causal effect. For treatment-related ICEs,

which are often informative about a patient’s outcome, we use a composite variable strategy that

assigns an outcome value indicative of treatment failure. For treatment-unrelated ICEs, we apply

a hypothetical strategy, assuming their timing is conditionally independent of the outcome given

treatment and baseline covariates, and envisioning a scenario in which such events do not occur.

The central thesis of this paper is to address the challenge of competing ICEs, where the first

ICE censors all subsequent ones. In this paper, we propose a principled framework that carefully

formulates the estimand, establishes its nonparametric identification and semiparametric estimation

theory, and introduces weighting, outcome regression, and doubly robust estimators. While our

proposed framework provides a rigorous and flexible approach for handling competing ICEs in RCTs,

several challenges and extensions remain open for future research.
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6.1 Data collection and ICE classification

Our proposed methods have broad applicability across various therapeutic areas, including immunol-

ogy, oncology, and cardiology, where treatment discontinuation and other ICEs frequently occur.

However, the effectiveness of these approaches relies on the accurate classification of ICEs, which

should be performed in collaboration with clinicians to ensure clinical relevance in trial analyses. To

support this, a modernized case report form is needed to enable more granular documentation of

the timing, reasons, and magnitude of treatment discontinuation. For example, the reason for the

event should be specified, such as discontinuation due to toxicity versus lack of efficacy. In some

cases, the event may need to meet a threshold of magnitude, such as the use of additional medication

exceeding a specified duration or dose. Additionally, the timing of the event may be relevant, par-

ticularly in relation to its proximity to outcome assessment. Fortunately, a cross-industry PHUSE

working group is tackling this problem, and a recommended new case report form will be available

soon (PHUSE Working Group, 2024).

6.2 Random K

In practice, the measurement of the outcome of interest Y does not necessarily happen at a fixed

point k. For instance, the time K that a patient visits the clinic and takes the measurement can be

treated as a random variable independent of treatment A, potential outcomes Y (a), and both types

of ICEs T (a) and C(a) for a = 0, 1. For a random K, the analogous formulas to both the previous

identification formulas (2) and (3) hold, with a replacement of k to K, i.e.,

τ = E {µ1(X)S1(K | X)− µ0(X)S0(K | X)} (9)

= E

[
AY 1(T ∧ C > K)

e(X)G1(K | X)
− (1−A)Y 1(T ∧ C > K)

{1− e(X)}G0(K | X)

]
. (10)

If K is a pre-treatment covariate that is observed, the proposed four estimators carry over by

replacing the fixed k with the observed values of K. If K is also treated as a post-treatment variable,

we can construct a weighting estimator following (10). However, (9) no longer provides a feasible

identification formula unless Sa(K | X) is identified for a = 0, 1. Considering the presence of three

competing time-to-event random variables, it becomes necessary to employ competing risks models.

We defer this analysis to future work.
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Supplementary Material

Section A provides additional results on comparing the four proposed estimators and another

martingale-corrected weighting estimator, discussed in Section 4.3 of the main paper.

Section B reports detailed results from Monte Carlo simulations that assess the finite-sample

performance of our proposed estimators.

Section C provides proofs of all theorems and propositions.

A Additional results

A.1 Pairwise differences between the estimators

As discussed in Section 4.3, the observed differences among the four estimators provide insight into

the presence of nuisance model misspecification. To illustrate the idea, consider the treated arm as

an example. Let µ̂†
1 denote the treated arm counterpart in τ̂ † for † ∈ {out, ipw, aug, eif}, and let

p−→

denote convergence in probability. The probability limits of the pairwise differences between these

estimators are given by

µ̂aug
1 − µ̂ipw

1
p−→ E

{
e∗(X)− e(X)

e∗(X)
µ∗
1(X)S∗

1(k | X)

}
,

µ̂aug
1 − µ̂out

1
p−→ E

[
e(X)

e∗(X)
{µ∗

1(X)S∗
1(k | X)− µ1(X)S1(k | X)}

]
,

µ̂eif
1 − µ̂aug

1
p−→ E

[
e(X)

e∗(X)
µ∗
1(X)S∗

1(k | X)

∫ k

0

S1(t | X)G1(t | X)

S∗
1(t | X)G∗

1(t | X)
{dΛ1(t | X)− dΛ∗

1(t | X)}
]
.

These probability limits indicate the impact of nuisance model misspecification on the pairwise

comparisons. For example, if G1(t | X) is correctly specified, the expected difference between µ̂eif
1 and

µ̂aug
1 should be small. Similar logic applies to other comparisons. Therefore, when implementing all

four estimators in practice, the observed difference among them may serve as an informal diagnostic

tool to detect possible nuisance model misspecification.

A.2 The martingale-corrected weighting estimator

In this subsection, we present the explicit form of the martingale-corrected weighting estimator

introduced in Section 4.3. Drawing from the proof of Theorem 2 in Section C.3, if we do not project

onto the propensity score nuisance tangent space in Step 2, the following identification formula for
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µ1 holds:

µ1 = E

[
A

e(X)

{
Y 1(T ∧ C > k)

G1(k | X)
+ µ1(X)S1(k | X)

∫ T̃

0

dMG1(t)

S1(t | X)G1(t | X)

}]
,

which motivates the following estimator for µ1:

µ̂mc-ipw
1 = n−1

n∑
i=1

AiYi1(Ti ∧ Ci > k)

ê(Xi)Ĝ1(k | Xi)
+ n−1

n∑
i=1

Ai

ê(Xi)
µ̂1(Xi)Ŝ1(k | Xi)

∫ T̃i

0

dMĜ1
(t)

Ŝ1(t | Xi)Ĝ1(t | Xi)
.

The control counterpart, µ̂mc-ipw
0 , is defined analogously, and the estimator for τ is given by τ̂mc-ipw =

µ̂mc-ipw
1 − µ̂mc-ipw

0 .

Under Assumuptions 1 and 2, and assuming correct specification of e(X), the estimator τ̂mc-ipw

is consistent for τ if either Ga(t | X) is correct, or both µa(X) and Sa(t | X) are correct for t ≤ k and

a = 0, 1. Although the martingale correction enhances robustness to misspecification of Ga(t | X),

τ̂mc-ipw is still less attractive than τ̂ eif: it does not achieve the efficiency bound and is not robust

to misspecification of e(X). Moreover, it does not inherit the implementation simplicity of τ̂aug.

In particular, it requires estimating the full survival curves for both the treatment-unrelated ICEs

Ga(t | X) and treatment-related ICEs Sa(t | X) over t ≤ k, making it computationally demanding

without offering clear practical advantages.

B Simulation

In this section, we conduct Monte Carlo simulations to study the finite sample performance of our

proposed estimators.

B.1 Data generating processes

We first generate the covariates X = (X1, X2, X3)
t ∈ R3 from three independent standard Gaussian

distributions and denote X̃j = {(Xj +2)2 − 1}/
√
12 for j = 1, 2, 3. Next, we generate the treatment

assignment following A | X ∼ Bernoulli({e(X)}) with e(X) being the propensity score model, and

generate the potential outcomes following Y (a) | X ∼ N (µa(X), σ2
a) with µa(X) being the outcome

model for a = 0, 1. We then generate the potential values of the treatment-related ICE survival time
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T (a) from the distribution with a survival function

Sa(t | X) = exp[−0.002t1.2 exp{γa(X)}]

and the potential values of the treatment-unrelated ICE survival time C(a) from the distributions

with a survival function

Ga(t | X) = exp[−ϱa(t) exp{δa(X)}],

for a = 0, 1. For each of the nuisance parameters, we consider two scenarios when it will be correctly

modeled and misspecified, therefore, we generate data following two different choices of each. We

summarize the detailed data-generating choices in Table S1.

Table S1: Model choices for the nuisance parameters

Correctly specified Misspecified

logit{e(X)} (X1 +X2 +X3)/5 1(X1 ≥ 0){exp(X̃2)−X2(1 + X̃3)} − exp(X̃2)

µ1(X) 2(X1 +X2 +X3) 1(X1 ≥ 0){X2 + exp(X2)X̃3 − X̃2}+ X̃2

µ0(X) X1 +X2 +X3 −X̃1 − 1(X1 > 0.5)X̃2 + 1(X1 < −0.5)X2
2 log(|X3|+ 1)

σa 0.1(a+ 1) 1

γ1(X) 0.1(X1 + 2X2 − 2X3) 0.1(X2
1X2 −X2 − 1) + 1(X3 ̸= 0)X2 log(10X

2
3 )

γ0(X) 0.1(X1 − 2X2 + 2X3) 0.01(−X̃1 + X̃2 + X̃3)

δ1(X) 0 0.1(X2
1X2 −X2 − 1) + 1(X3 ̸= 0)X2 log(10X

2
3 )

δ0(X) 0 0

ϱa(t) −0.01t1.2 −0.01at1.2 + 0.6 ∗ 0.011/1.2(1− a)t

We consider five data-generating regimes: all four models are correctly specified, misspecified e

and correct (G,µ, S), misspecified (e,G) and correct (µ, S), misspecified (µ, S) and correct (e,G),

and all four models are misspecified. Let Y = AY (1) + (1−A)Y (0), T = AT (1) + (1−A)T (0), and

C = AC(1) + (1−A)C(0). Generate the observed event time as T ∧C ∧ k, the observed event type

indicator, and the observed outcome Y if T ∧ C > k.

B.2 Simulation results

We compare the finite sample performance of the outcome estimator τ̂out, the weighting estimator

τ̂ ipw, the augmented weighting estimator τ̂aug, and the EIF estimator τ̂ eif based on 1000 Monte Carlo
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samples with a sample size of n = 1000. When fitting the nuisance models, we use logistic regression

of A on X to estimate the propensity score model, the linear regression of Y on X on the subsample

A = a, T ∧ C > k to estimate the outcome model, and the Cox proportional hazard regression of

T and C on X on the subsample A = a to estimate the treatment-related ICE survival model and

the censoring model, respectively, for a = 0, 1. We use X in all regression models, therefore, when

the true data-generating processes involve non-linear functions of X, the fitted nuisance models

suffer from misspecification. We evaluate the performance of the four estimators with reported bias,

standard deviation, and coverage probability using a nonparametric bootstrap with 200 bootstrap

samples in Table S2.

Table S2: Finite sample performance of the four estimators. For each estimator, we report the finite-
sample bias, standard deviation (SD), and the coverage rate (CR) of a 95% confidence interval, which
is constructed using a nonparametric bootstrap with 200 bootstrap iterations. Each row corresponds
to a different data-generating regime.

τ̂out τ̂ ipw τ̂aug τ̂eif

Bias SD CR Bias SD CR Bias SD CR Bias SD CR

all correct 0.003 0.100 0.989 0.005 0.154 0.977 0.004 0.152 0.980 0.004 0.110 0.982

e wrong −0.002 0.134 0.978 −0.338 0.527 0.916 −0.003 0.479 0.961 0.000 0.234 0.979

e G wrong −0.002 0.130 0.985 −0.194 1.591 0.831 0.141 1.559 0.972 −0.013 0.354 0.969

µ S wrong −0.085 0.170 0.936 −0.009 0.186 0.974 −0.009 0.186 0.974 −0.012 0.176 0.972

all wrong 0.230 0.233 0.837 0.660 5.799 0.898 0.850 5.782 0.967 0.573 3.022 0.919

Consistent with our theoretical results, all estimators have a finite sample bias close to zero when

all models are correctly specified. When e is misspecified and (G,µ, S) are correct, the weighting

estimator τ̂ ipw is inconsistent while the other three estimators have small finite sample bias. Under

the regime when e and G are misspecified, both τ̂ ipw and τ̂aug perform poorly as they have larger

finite sample biases, τ̂out and τ̂ eif show small finite sample biases as expected. When (µ, S) are

misspecified, the outcome estimator τ̂out has a relatively large bias, while all other three estimators

have near-zero biases. All estimators have non-negligible finite sample bias when all nuisance models

are misspecified. τ̂ eif is most robust to model misspecifications across all different regimes.

τ̂ eif shows a relatively smaller standard deviation compared to τ̂ ipw and τ̂aug in the regimes

where all estimators are consistent. The outcome estimator τ̂out always has the smallest standard

deviation when (µ, S) is correctly specified. Both τ̂ ipw and τ̂aug have larger standard deviations

across all regimes in which they are consistent. Furthermore, confidence intervals constructed using

the nonparametric bootstrap yield valid coverage rates for the corresponding consistent estimators
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in their respective regimes.

Next, we evaluate two ad-hoc methods commonly used in clinical trials with ICEs, demonstrating

through simulations that they are biased in estimating the clinically relevant causal parameter. The

first method is the non-responder imputation method that assigns an outcome as 0 whenever an ICE

occurs. It is equivalent to using the composite outcome strategy that treats all ICEs as treatment-

related, leading to a composite outcome equal to 0. The second method naively applies a hypothetical

strategy to all ICEs, assuming they are independent of potential outcomes conditional on observed

covariates. We generate data under the “µ S wrong” regime, ensuring correct specification of both

the propensity score e(X) and the treatment-unrelated ICE survival model Ga(t | X) for a = 0, 1.

Based on 1000 Monte Carlo simulations with a sample size of n = 1000, the inverse probability-

weighting estimator using the non-responder imputation method exhibits a finite sample bias of

−1.195 with a standard deviation of 0.077, and that using the hypothetical strategy for all ICEs

has a bias of 1.188 with a standard deviation of 0.388. Both ad-hoc methods yield inconsistent

estimators.

C Proofs

C.1 Proof of Theorem 1

First, equation (2) holds because its left-hand side equals

E[E{Y (1)1(T (1) > k) | X}]

= E[E{Y 1(T > k) | X,A = 1}]

= E{E(Y | T > k,X,A = 1)pr(T > k | X,A = 1)}

= E{E(Y | T > k,C > k,X,A = 1)pr(T > k | X,A = 1)},

which is equal to the right-hand side of (2), where the first equality is by the law of iterated

expectations, the second equality is by the randomization assumption 1, and the third equality is by

the censoring at random assumption 2.

Next, equation (3) holds because its right-hand side equals

E

[
E

{
AY 1(T ∧ C > k)

e(X)pr(C > k | X,A = 1)
| X

}]
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= E

(
1

e(X)pr(C > k | X,A = 1)
E [AY (1)1{T (1) ∧ C(1) > k} | X]

)
= E

(
1

e(X)pr(C > k | X,A = 1)
E(A | X)E [Y (1)1{T (1) > k}1{C(1) > k} | X]

)
= E

(
1

pr(C > k | X,A = 1)
E[1{C(1) > k} | X]E [Y (1)1{T (1) > k} | X]

)
= E[E{Y (1)1(T (1) > k) | X}],

which is equal to the left-hand side of (3), where the first equality is by the law of iterated ex-

pectations, the third equality is by the randomization assumption 1, the fourth equality is by the

censoring at random assumption 2, and the last equality is again by the law of iterated expectations.

□

C.2 Proof of Proposition 1

We prove that under the correct specification of the censoring model, τ̂aug is doubly robust in the

sense that it is consistent for τ if either e∗ = e or (µ∗
1 = µ1, S

∗
1 = S1). We have

E

{
AY 1(T ∧ C > k)

e∗(X)G1(k | X)
− A− e∗(X)

e∗(X)
µ∗
1(X)S∗

1(k | X)

}
= E

[
E{AY 1(T ∧ C > k) | X}

e∗(X)G1(k | X)
− e(X)− e∗(X)

e∗(X)
µ∗
1(X)S∗

1(k | X)

]
= E

{
e(X)

e∗(X)
µ1(X)S1(k | X)− e(X)− e∗(X)

e∗(X)
µ∗
1(X)S∗

1(k | X)

}
, (S1)

where the first equality follows from the law of integrated expectations and the second equality

follows from similar derivations as in the proof of Theorem 1. Now observe that the final expression

of (S1) is equal to µ1 if either e∗ = e or (µ∗
1 = µ1, S

∗
1 = S1). Therefore, we have

E

{
AY 1(T ∧ C > k)

e∗(X)G1(k | X)
− A− e∗(X)

e∗(X)
µ∗
1(X)S∗

1(k | X)− µ1

}
= 0

if either e∗ = e or (µ∗
1 = µ1, S

∗
1 = S1) holds. A parallel argument applies to the control counterpart.

Therefore, combining the treated and control components, we conclude that τ̂aug is consistent for τ

if either the propensity score model is correct, or the outcome and survival models for the treatment-

related ICE are both correct. This establishes the double robustness of τ̂aug. □
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C.3 Proof of Theorem 2

We follow the semiparametric theory in Bickel et al. (1993) to derive the EIF for µ1. As discussed

in Section 4, we have two levels of coarsening of the full data (X,Y cp(1), Y cp(0)), one is because

the treatment-unrelated ICE time C(a) is censoring T (a)∧ k, and the other is due to the treatment

assignment. Following the steps in Hubbard et al. (2000), we first consider the case when every

observation is assigned to the treatment group, i.e., when there is no missingness generated by the

treatment assignment, and then project the derived EIF onto the nuisance tangent space of the

propensity score to get the final form of EIF for µ1.

Step 1. With full data (X,Y cp(1), Y cp(0)), the estimating equation for µ1 is Dfull = Y cp(1) −

µ1. Since Y cp(1) is only observable if C(1) > T (1) ∧ k, the full data is not available even if all

corresponding potential outcomes under treatment A = 1 are observed, and the observed data is

O(1) = (X,∆(1), T̃ (1),∆(1)Y cp(1)) ∼ P1,

where ∆(1) = 1(C(1) > T (1) ∧ k) is the missing indicator with ∆(1) = 1 if Y cp(1) is observed and

∆(1) = 0 otherwise, and T̃ (1) = T (1) ∧ C(1) ∧ k is the observed event time with T̃ (1) = T (1) ∧ k

if ∆(1) = 1, Y cp(1) is observed, and T̃ (1) = C(1) if ∆(1) = 0, Y cp(1) is missing. An identification

formula for µ1 is

µ1 = E

{
∆(1)Y cp(1)

G1(T̃ (1) | X)

}
,

where G1(t | X) = pr(C(1) > t | X) is the probability of not censoring up to time t conditioning on

the covariates. We can write the IPCW estimating equation as

DIPCW =
∆(1){Y cp(1)− µ1}

G1(T̃ (1) | X)
,

and have E(DIPCW) = 0 by the law of iterated expectations and the censoring at random assumption.

Next, we follow the steps in van der Laan and Rubin (2007) to derive the EIF for µ1 when the

observed data is O(1) = (X,∆(1), T̃ (1),∆(1)Y cp(1)). For ease of notation, we omit the subscripts,

superscripts, or numbers in parenthesis (1) that indicate the potential outcomes under the treatment

A = 1 in the following derivation, so the dependence on the treatment arm is implicit. For ease of

notation, denote T 1 = T ∧ k.
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Let T (P ) denote the tangent space which is the whole Hilbert space L2
0(P ) since our model

is nonparametric. The tangent space can be written as a direct sum of three components T =

TX ⊕ TF ⊕ TCAR with

TX = {h(X) ∈ L2
0(P ) : E{h(X)} = 0},

TF = {h(O) ∈ L2
0(P ) : E{h(O) | C,X} = 0},

TCAR = {h(O) ∈ L2
0(P ) : E{h(O) | Y cp, T 1, X} = 0},

where TX , TF, and TCAR are orthogonal to each other due to the censoring at random assumption

and the factorization of the observed data. These tangent spaces are generated from scores of

submodels that perturb the marginal distribution of X, the conditional distribution of Y 1 | X, and

the conditional censoring probability C | X, respectively. Due to the orthogonality, we have the

decomposition of any h(O) ∈ L2
0(P ) as

h(O) = Π{h | T (P )}

= Π{h | TX(P )}+Π{h | TF(P )}+Π{h | TCAR(P )}.

Let D(O) denote the efficient influence function for µ1. By the results in Chapter 1.4 of van der

Laan and Robins (2003), we have: (1) D(O) should be orthogonal to the nuisance tangent space

TCAR, thus Π{D(O) | TCAR(P )} = 0; (2) D(O) can be rewritten as

D = DIPCW −Π{DIPCW | TCAR(P )},

thus

Π{D | TF(P )} = Π{DIPCW | TF(P )} −Π{Π{DIPCW | TCAR(P )} | TF(P )}

= Π{DIPCW | TF(P )}

where the last equality is by the fact that TF and TCAR are orthogonal to each other, and similarly,

Π{D | TX(P )} = Π{DIPCW | TX(P )}.

These projections provide us with two different ways to compute the EIF D: (1) directly com-
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pute the projections Π{DIPCW | TX(P )} and Π{DIPCW | TF(P )} and sum them up; (2) compute

the projection Π{DIPCW | TCAR(P )} and subtract it from DIPCW. In the classic survival outcome

problem, these two methods are symmetric since T and C are censoring each other thus the projec-

tions on TF(P ) and TCAR(P ) are very similar. However, due to the complication generated by Y in

our setting, the second approach is easier, since the tangent space TF(P ) is hard to compute.

We next compute Π{DIPCW | TCAR(P )}. By Theorem 1.1 in van der Laan and Robins (2003),

TCAR(P ) =

{∫
H(t,F(t))dMG(t) for all functions H(t,F(t))

}
∩ L2

0(P ),

and the projection of a function h(O) onto TCAR(P ) is

Π{h(O) | TCAR(P )} =

∫ T̃

0
{E(h(O) | dA(t) = 1,F(t))− E(h(O) | dA(t) = 0,F(t))} dMG(t),

where A(t) = 1(C ≤ t) is the indicator of whether censoring happens up until time t (define C = ∞

if C > T 1 so that C is always observed), F(t) = (Ā(t−), X) is the history observed up to time t,

and dMG(t) = 1(C ∈ dt,∆ = 0)− 1(T̃ ≥ t)dΛ(t | X) is the Doob–Meyer martingale of the counting

process of censoring C. E(DIPCW | dA(t) = 1,F(t)) = 0 by the definition of DIPCW, thus we only

need to compute E(DIPCW | dA(t) = 0,F(t)), which plus µ1 is equal to

E

{
∆Y cp

G(T̃ | X)
| dA(t) = 0,F(t)

}
= E

{
∆Y cp

G(T̃ | X)
| T 1 ≥ t, C ≥ t,X

}
= E

{
∆Y cp

G(T̃ | X)
| T 1 ≥ t,X

}/
G(t | X)

= E

{
Y cp

G(T ∧ k | X)
pr(C > T ∧ k | T 1 ≥ t, T, Y 1, X) | T 1 ≥ t,X

}/
G(t | X)

= E

{
Y cp

G(T ∧ k | X)
pr(C > T ∧ k | X) | T 1 ≥ t,X

}/
G(t | X)

= E
{
Y cp | T 1 ≥ t,X

}/
G(t | X).

By the fact that the integration is over t : t < T̃ , we have t < T ∧ k ∧C thus t > k. The conditional
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expectation

E
{
Y cp | T 1 ≥ t,X

}
= E

{
Y cp | T 1 ≥ t, T 1 = T,X

}
pr(T 1 = T | T 1 ≥ t,X)

+E
{
Y cp | T 1 ≥ t, T 1 = k,X

}
pr(T 1 = k | T 1 ≥ t,X)

= E(Y | T > k ≥ t,X)pr(T > k | T 1 ≥ t,X)

= E(Y | T > k,X)pr(T > k | T ∧ k ≥ t,X)

= E(Y | T > k,X)pr(T > k | T ≥ t,X)

=
E{Y 1(T > k) | X}

pr(T > k | X)

pr(T > k | X)

pr(T ≥ t | X)

=
E{Y 1(T > k) | X}

pr(T ≥ t | X)
.

Therefore, we have

Π{DIPCW | TCAR(P )}+ µ1 = −
∫ T̃

0

E{Y 1(T > k) | X}
pr(T ≥ t | X)

dMG(t)

G(t | X)

= −E{Y 1(T > k) | X}
∫ T̃

0

dMG(t)

S(t | X)G(t | X)
,

and thus the EIF assuming O(1) is the observed data is

D =
∆Y cp

G(T̃ | X)
+ E(Y cp | X)

∫ T̃

0

dMG(t)

S(t | X)G(t | X)
− µ1 (S2)

Step 2. Next, we follow steps in Section 3 of Hubbard et al. (2000) and compute the EIF when the

real observed data is O = (X,A,∆, T̃ ,∆Y cp). We need to construct a weighting estimating equation

and then subtract its projection onto the nuisance tangent space of the propensity score to get the

final form of the EIF. To be clear on the distinction between potential outcomes and the observed

values, we add back the dependence on the treatment assignment in (S2) and write it as

D(1) =
∆(1)Y cp(1)

G1(T̃ (1) | X)
+ E(Y cp(1) | X)

∫ T̃ (1)

0

dMG1(t)

S1(t | X)G1(t | X)
− µ1.

A valid weighting estimating equation is

DIPW =
A

e(X)

{
∆Y cp

G1(T̃ | X)
+ E(Y cp | X,A = 1)

∫ T̃

0

dMG1(t)

S1(t | X)G1(t | X)

}
− µ1.

S10



Further, project this onto the nuisance tangent space of the propensity score, the projection is

Π{DIPW | Tpscore} = E {DIPW | A,X} − E {DIPW | X}

=
A− e(X)

e(X)
E

{
∆Y cp

G1(T̃ | X)
| X,A = 1

}
=

A− e(X)

e(X)
E(Y cp | X,A = 1),

where the second equality is by the fact that E{dMG1(t) | X,A = 1} = E{dMG1(t) | X} = 0, and

the last equality is by the censoring at random assumption. Therefore, the EIF

D1 = DIPW −Π{DIPW | Tpscore}

=
A

e(X)

{
∆Y cp

G1(T̃ | X)
+ E(Y 1(T > k) | X,A = 1)

∫ T̃

0

dMG1(t)

S1(t | X)G1(t | X)

}

−A− e(X)

e(X)
E(Y 1(T > k) | X,A = 1)− µ1

has the given form in Theorem 2. □

C.4 Proof of Theorem 3

We prove the result by showing

µ1 = E

[
A

e∗(X)

{
Y 1(T ∧ C > k)

G∗
1(k | X)

+ µ∗
1(X)S∗

1(k | X)

∫ T̃

0

dMG∗
1
(t)

S∗
1(t | X)G∗

1(t | X)

}

−A− e∗(X)

e∗(X)
µ∗
1(X)S∗

1(k | X)

]
(S3)

if either {e∗(X) = e(X), G∗
1(t | X) = G1(t | X)} or {µ∗

1(X) = µ1(X), S∗
1(t | X) = S1(t | X)} for

t ≤ k. Define

T1 =
A

e∗(X)

Y 1(T ∧ C > k)

G∗
1(k | X)

− A− e∗(X)

e∗(X)
µ∗
1(X)S∗

1(k | X)− µ1(X)S1(k | X),

T2 =
A

e∗(X)
µ∗
1(X)S∗

1(k | X)

∫ T̃

0

dMG∗
1
(t)

S∗
1(t | X)G∗

1(t | X)
.

By the identification formula (2), to prove (S3), it suffices to show E(T1+T2) = 0 if either {e∗(X) =

e(X), G∗
1(t | X) = G1(t | X)} or {µ∗

1(X) = µ1(X), S∗
1(t | X) = S1(t | X)} for t ≤ k.
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First, we have

E{dMG∗
1
(t) | X} = E{1(C ∈ dt,∆ = 0) | X} − E{1(T̃ ≥ t)dΛ∗

1(t | X) | X}

= S1(t | X)G1(t | X)dΛ1(t | X)− S1(t | X)G1(t | X)dΛ∗
1(t | X)

= S1(t | X)G1(t | X){dΛ1(t | X)− dΛ∗
1(t | X)},

and therefore,

E(T2 | X) =
e(X)

e∗(X)
µ∗
1(X)S∗

1(k | X)E

{∫ k

0

dMG∗
1
(t)

S∗
1(t | X)G∗

1(t | X)
| X

}
=

e(X)

e∗(X)
µ∗
1(X)S∗

1(k | X)

∫ k

0

S1(t | X)G1(t | X)

S∗
1(t | X)G∗

1(t | X)
{dΛ1(t | X)− dΛ∗

1(t | X)},

where the first equality follows from Assumption 1. Next, we have

E(T1 | X) =
e(X)G1(k | X)

e∗(X)G∗
1(k | X)

µ1(X)S1(k | X)− e(X)− e∗(X)

e∗(X)
µ∗
1(X)S∗

1(k | X)− µ1(X)S1(k | X)

=
e(X)

e∗(X)

{
G1(k | X)

G∗
1(k | X)

− 1

}
µ∗
1(X)S∗

1(k | X)

+

{
e(X)G1(k | X)

e∗(X)G∗
1(k | X)

− 1

}
{µ1(X)S1(k | X)− µ∗

1(X)S∗
1(k | X)}

= − e(X)

e∗(X)
µ∗
1(X)S∗

1(k | X)

∫ k

0

G1(t | X)

G∗
1(t | X)

{dΛ1(t | X)− dΛ∗
1(t | X)}

+

{
e(X)G1(k | X)

e∗(X)G∗
1(k | X)

− 1

}
{µ1(X)S1(k | X)− µ∗

1(X)S∗
1(k | X)} ,

where the last equality follows from the Duhamel equation (Gill and Johansen, 1990; Westling et al.,

2024). Combing T1 and T2, we have

E(T1 + T2) = E{E(T1 + T2 | X)}

=
e(X)

e∗(X)
µ∗
1(X)S∗

1(k | X)

∫ k

0

{
S1(t | X)

S∗
1(t | X)

− 1

}
G1(t | X)

G∗
1(t | X)

{dΛ1(t | X)− dΛ∗
1(t | X)}

+

{
e(X)G1(k | X)

e∗(X)G∗
1(k | X)

− 1

}
{µ1(X)S1(k | X)− µ∗

1(X)S∗
1(k | X)} ,

which is equal to 0 if either {e∗(X) = e(X), G∗
1(t | X) = G1(t | X)} or {µ∗

1(X) = µ1(X), S∗
1(t | X) =

S1(t | X)} for t ≤ k.

By symmetry, the part corresponding to the control arm a = 0 also holds, thus the double
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robustness in Theorem 3 holds. □

C.5 Proof of Theorem 4

Following the von Mises expansion (Hines et al., 2022), let P and Pn denote the true and empirical

distribution of the observed data, respectively, and P̂n denotes an estimated P , we have

n1/2(τ̂ eif − τ) = n−1/2
n∑

i=1

Dτ (Oi) + n1/2(Pn − P ){Dτ (O, P̂n)−Dτ (O)} − n1/2R(P, P̂n),

where Dτ (O, P̂n) is the EIF for τ when plugging in the estimated values of the nuisance parameters

and R(P, P̂n) denotes the higher order remainder term. Under Assumption 4, the empirical process

term n1/2(Pn − P ){Dτ (O, P̂n) − Dτ (O)} = oP (1) (Van der Vaart, 2000). The remainder term

corresponding to the treatment arm a = 1 satisfies

R1(P, P̂n) = −E{Dτ (O, P̂n)} − E{µ̂1(X)Ŝ1(k | X)− µ1(X)S1(k | X)}

= −E

[
A

ê(X)

{
Y 1(T ∧ C > k)

Ĝ1(k | X)
+ µ̂1(X)Ŝ1(k | X)

∫ k

0

dMĜ1
(t)

Ĝ1(t | X)Ŝ1(t | X)

}

−A− ê(X)

ê(X)
µ̂1(X)Ŝ1(k | X)− µ̂1(X)Ŝ1(k | X) + µ̂1(X)Ŝ1(k | X)− µ1(X)S1(k | X)

]
= −E

[
e(X)

ê(X)
µ̂1(X)Ŝ1(k | X)

∫ k

0

{
S1(t | X)

Ŝ1(t | X)
− 1

}
G1(t | X)

Ĝ1(t | X)
{dΛ1(t | X)− dΛ̂1(t | X)}

]

+E

[{
e(X)G1(k | X)

ê(X)Ĝ1(k | X)
− 1

}{
µ1(X)S1(k | X)− µ̂1(X)Ŝ1(k | X)

}]

= E

{
e(X)

ê(X)
µ̂1(X)Ŝ1(k | X)

∫ k

0

S1(t | X)− Ŝ1(t | X)

Ŝ1(t | X)

G1(t | X)− Ĝ1(t | X)

Ĝ1(t | X)
dt

}

+E

[
e(X)G1(k | X)− ê(X)Ĝ1(k | X)

ê(X)Ĝ1(k | X)

{
µ1(X)S1(k | X)− µ̂1(X)Ŝ1(k | X)

}]
,

where the third equality follows from a similar derivation as in the Proof of Theorem 3 and the

fourth equality follows from the Duhamel equation (Gill and Johansen, 1990; Westling et al., 2024).

Let R11 and R12 denote the two terms in the last two lines, respectively. For the remainder term to

be of small order, we need R11 = oP (n
−1/2) and R12 = oP (n

−1/2).

Next, we show that Assumption 5 is a sufficient condition for R11 = oP (n
−1/2) and R12 =

oP (n
−1/2). In the following discussion, we suppress the dependency of the nuisance functions and

their estimated values on X for ease of notation. By the facts that eµ̂1Ŝ1(k)/ê is bounded and
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1/{Ŝ1(t)Ĝ1(t)} is bounded for any t ≤ k, we employ the Cauchy–Schwarz inequality to upper bound

the term R11 by a constant times

∫ k

0
||S1(t)− Ŝ1(t)||2||G1(t)− Ĝ1(t)||2dt,

where || · ||2 denotes the L2(P ) norm. It follows that Assumption 5 guarantees R11 = oP (n
−1/2).

For R12, we further suppress the dependency of S1(k | X), G1(k | X) and their estimators on both

k and X, and rewrite the term as

R12 = E[{ê(G1 − Ĝ1) +G1(e− ê)}{µ̂1(S1 − Ŝ1) + S1(µ1 − µ̂1)}/(êĜ1)].

Because ê/Ĝ1 is bounded, by the Cauchy-Schwarz inequality, the first term in R12 is upper bounded

by ||G1 − Ĝ1||2||S1 − Ŝ1||2 = oP (n
−1/2) by Assumption 5. The other three terms in R12 can be

similarly bounded. Thus, R1(P, P̂n) = oP (n
−1/2).

Symmetric arguments imply the analogous term for the control arm satisfiesR0(P, P̂n) = oP (n
−1/2).

Therefore, the results in Theorem 4 follow from the central limit theorem. □
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