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Motivating example: two phase-3 immunology trials

▶ Morand et al. (2023) and Petri et al. (2023)

▶ Causal effect of baricitinib versus placebo on Systemic Lupus
Erythematosus

▶ Primary endpoint: an immune response index measured 52 weeks
after treatment initiation

▶ Ideally, comparisons between two groups

▶ Outcomes not measured: 218/760 and 211/775 in two trials
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Motivating example: two phase-3 immunology trials

▶ Treatment discontinuation due to relocation and adverse event in
the example are called intercurrent events (ICEs)

▶ ICEs: events that occur after the treatment initiation and affect
either the interpretation or existence of outcome measurements
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ICEs in the motivating RCTs

Figure: Pie chart showing the ICE types and proportions
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Five strategies to address ICEs

▶ ICH E9 (R1): a guideline published in 2019 to address ICEs by the
International Council for Harmonisation (ICH)

▶ Treatment policy strategy: intention-to-treat-type principle

▶ Hypothetical strategy: what if hypothetically the ICE would not
occur

▶ Composite outcome strategy: modify the causal parameter of
interest
▶ an ICE is itself informative about the patients’ outcome of interest
▶ e.g., when the outcome is success or failure, the occurrence of ICE

can be treated as another mode of failure

▶ While-on-treatment strategy: compare outcomes before ICEs

▶ Principal stratification strategy: causal effects on subgroups
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Our proposal: combine two strategies

▶ Classify ICEs into two broad types:
▶ effect-informative ICEs, e.g., adverse effect, lack of efficacy
▶ effect-uninformative ICEs, e.g., treatment discontinuation due to

relocation or COVID-19 lockdown

▶ Combining composite outcome and hypothetical strategies
▶ effect-informative ICEs: composite outcome strategy
▶ effect-uninformative ICEs: hypothetical strategy

▶ Key challenges:
▶ combining composite outcome and hypothetical strategies needs new

theory and method
▶ need to deal with competing ICEs
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Challenge in combining the two strategies

Figure: Illustration of the motivating immunology trial example
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Notation and potential outcomes

▶ Binary treatment: A = 1, 0 for treatment and control

▶ Primary endpoint: Y , measured at a pre-specified time point k
▶ Two types of ICEs:

▶ effect-informative ICEs: event time T
▶ effect-uninformative ICEs: event time C

▶ Define T = ∞ if T > k , and C = ∞ if C > k

▶ Both ICEs are post-treatment variables, thus having potential values
T (a) and C (a)

▶ Potential outcomes: Y (a, t, c)

▶ Consistency: the observed outcome Y = Y (A,T (A),C (A))
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Causal parameter of interest

τ = E [Y (1, c = ∞)︸ ︷︷ ︸
hypothetical

1{T (1) = ∞}︸ ︷︷ ︸
composite

]− E [Y (0, c = ∞) 1{T (0) = ∞}]

observed
ICE types

(T ,C , k)-
relationship

Y (A, c = ∞) 1(T = ∞)
composite
outcome

TD T ∧ k > C ? ? ?
AE C ∧ k > T ? 0 0

no AE/TD C ∧ T > k Y 1 Y
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Identification assumptions

Assumption 1 (Randomization)

A {Y (a, c = ∞),T (a),C (a)} | X for a = 0, 1.

▶ Guaranteed by the experimental design in a randomized trial

Assumption 2 (Effect-uninformative ICE time)

C (a) {Y (a, c = ∞),T (a)} | X for a = 0, 1.

▶ Time to treatment discontinuation due to relocation is independent
of the hypothetical potential outcome and the time to adverse effect
given baseline covariates
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Nonparametric identification

Theorem 1 (Nonparametric identification)

Under Assumptions 1 and 2, τ is nonparametrically identified by the
following identification formulas:

τ = E {µ1(X )S1(k | X )− µ0(X )S0(k | X )} (1)

= E

[
AY 1(T ∧ C > k)

e(X )G1(k | X )
− (1− A)Y 1(T ∧ C > k)

{1− e(X )}G0(k | X )

]
. (2)
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Nonparametric identification 1: outcome models

τ = E {µ1(X )S1(k | X )− µ0(X )S0(k | X )} , (1)

where

▶ µa(X ) = E (Y | T ∧C > k ,X ,A = a): conditional mean of observed
outcome in the subsample with no ICE and A = a, and
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Nonparametric identification 1: outcome models

τ = E {µ1(X )S1(k | X )− µ0(X )S0(k | X )} , (1)

where

▶ µa(X ) = E (Y | T ∧ C > k ,X ,A = a), and

▶ Sa(k | X ) = pr(T > k | X ,A = a): survival probability of AE time
larger than k in the subsample A = a conditional on covariates
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Nonparametric identification 2: weighting

τ = E

[
AY 1(T ∧ C > k)

e(X )G1(k | X )
− (1− A)Y 1(T ∧ C > k)

{1− e(X )}G0(k | X )

]
, (2)

where

▶ e(X ) = pr(A = 1 | X ): propensity score, and
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Nonparametric identification 2: weighting

τ = E

[
AY 1(T ∧ C > k)

e(X )G1(k | X )
− (1− A)Y 1(T ∧ C > k)

{1− e(X )}G0(k | X )

]
, (2)

where

▶ e(X ) = pr(A = 1 | X ), and

▶ Ga(k | X ) = pr(C > k | X ,A = a): conditional probability of not
censoring up until time k in the subsample A = a
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Nonparametric identification

τ = E {µ1(X )S1(k | X )− µ0(X )S0(k | X )} (1)

= E

[
AY 1(T ∧ C > k)

e(X )G1(k | X )
− (1− A)Y 1(T ∧ C > k)

{1− e(X )}G0(k | X )

]
. (2)

▶ µa(X ) = E (Y | T ∧ C > k,X ,A = a)

▶ Sa(k | X ) = pr(T > k | X ,A = a)

▶ e(X ) = pr(A = 1 | X )

▶ Ga(k | X ) = pr(C > k | X ,A = a)

▶ Identification of Sa(t | X ) and Ga(t | X ) for t ≤ k (Robin and
Rotnitzky, 1992; Robins and Finkelstein, 2000)
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Two basic estimators based on two identification formulas

▶ Outcome regression estimator:

τ̂ out = n−1
n∑

i=1

µ̂1(Xi )Ŝ1(k | Xi )− n−1
n∑

i=1

µ̂0(Xi )Ŝ0(k | Xi )

▶ Inverse propensity score weighting estimator:

τ̂ ipw = n−1
n∑

i=1

AiYi1(Ti ∧ Ci > k)

ê(Xi )Ĝ1(k | Xi )
− n−1

n∑
i=1

(1− Ai )Yi1(Ti ∧ Ci > k)

{1− ê(Xi )} Ĝ0(k | Xi )

▶ τ̂out: consistent if the subsample outcome model and the survival
function are correctly specified

▶ τ̂ ipw: consistent if the propensity score model and the censoring
mechanism are correctly specified
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An augmented, conditionally doubly robust estimator

▶ Similar to the classic doubly robust estimator by combining outcome
regression and inverse propensity score weighting

▶ Augment weighting by outcome regression:

τ̂ aug = τ̂ ipw−n−1
n∑

i=1

{
Ai − ê(Xi )

ê(Xi )
µ̂1(Xi )Ŝ1(k | Xi ) +

Ai − ê(Xi )

1− ê(Xi )
µ̂0(Xi )Ŝ0(k | Xi )

}
.

▶ Conditionally doubly robust: Assume Ga(k | X ) is correct for
a = 0, 1. τ̂ aug is consistent for τ if either e(X ) is correct, or both
µa(X ) and Sa(k | X ) are correct for a = 0, 1

▶ τ̂ aug improves τ̂ ipw but may not improve τ̂out
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Another augmented, doubly robust, and semiparametrically
efficient estimator, based on efficient influence function

τ̂ eif = τ̂ aug + n−1
n∑

i=1

Ai

ê(Xi )
µ̂1(Xi )Ŝ1(k | Xi )

∫ T̃i

0

dMĜ1
(t)

Ŝ1(t | Xi ) Ĝ1(t | Xi )

− n−1
n∑

i=1

1− Ai

1− ê(Xi )
µ̂0(Xi )Ŝ0(k | Xi )

∫ T̃i

0

dMĜ0
(t)

Ŝ0(t | Xi ) Ĝ0(t | Xi )
.

▶ T̃i = Ci ∧ Ti ∧ k and ∆i = 1(Ci ≥ Ti ∧ k)

▶ Further augmentation based on martingales:
dMGa(t) = 1(C ∈ (t, t + dt],∆ = 0)− 1(T̃ ≥ t)dΛa(t | X ) with
Λa(t | X ) denoting the conditional cumulative hazard function for
the effect-uninformative ICE C in the treatment group A = a for
a = 0, 1
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Double robustness and semiparametric efficiency

▶ τ̂ eif is doubly robust in the sense that it is consistent for τ if either
▶ µa(X ) and Sa(t | X ) are correct for t ≤ k and a = 0, 1; or
▶ e(X ) and Ga(t | X ) are correct for t ≤ k and a = 0, 1

▶ τ̂ eif improves the previous three estimators in terms of robustness

▶ Asymptotically linear and achieves the semiparametric efficiency
bound
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Real-world application

▶ Two double-blinded, randomized, placebo-controlled phase-3
immunology trials

▶ Effect of baricitinib on systemic lupus erythematosus

▶ Doses: 2mg baricitinib, 4mg baricitinib, and placebo
▶ Primary outcome: Systemic lupus erythematosus Responder Index 4

(SRI4) at week 52, a binary composite responder index based on:
▶ improvement in disease activity, and
▶ without worsening of the overall condition or the development of

substantial disease activity in new organ systems

▶ Effect-informative ICEs: 82.6% and 84.4%; and effect-uninformative
ICEs: 17.4% and 15.6%

▶ Covariates: geographic region, corticosteriod use, Physician’s Global
Assessment score
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Data analysis results

▶ Coherent results across estimators: no severe model misspecification

▶ Different from ad hoc methods (details in the paper)

▶ Incoherent results from two trials: negative results for drug approval
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Thank you very much!
sizhu lu@berkeley.edu
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Simulation
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Semiparametric efficient influence function (EIF)

Theorem 2 (EIF for µ1)
Under the nonparametric model with Assumptions 1 and 2, the EIF for
µ1 is

Dµ1 =
A

e(X )

{
Y 1(T ∧ C > k)

G1(k | X )
+ µ1(X )S1(k | X )

∫ T̃

0

dMG1(t)

S1(t | X )G1(t | X )

}

−A− e(X )

e(X )
µ1(X )S1(k | X )− µ1, (3)

▶ T̃ = T ∧ C ∧ k : the observed event time;

▶ dMG1(t) = 1(C ∈ (t, t + dt],∆ = 0)− 1(T̃ ≥ t)dΛ1(t | X ): the
martingale constructed from the censoring counting process;

▶ Λ1(t | X ): the conditional cumulative hazard function for the
censoring C in the treatment subgroup.
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EIF estimator

With discrete observed time points, the integration part for i :∫ T̃i

0

dMĜ1
(t)

Ŝ1(t | Xi )Ĝ1(t | Xi )
=

∑
t≤T̃i

1(∆i = 0,Ci = t)− λ̂C1(t | Xi )

Ŝ1(t | Xi )Ĝ1(t | Xi )

= −
∑
t≤T̃i

λ̂C1(t | Xi )

Ŝ1(t | Xi )Ĝ1(t | Xi )
+

1(∆i = 0)

Ŝ1(T̃i | Xi )Ĝ1(T̃i | Xi )
. (4)

▶ λ̂C1(t | Xi ): estimated conditional hazard of censoring;

▶ First term in (4): summation of −λ̂C1(t | Xi )/{Ŝ1(t | Xi )Ĝ1(t | Xi )}
over all observed event time points before T̃i .

▶ Second term in (4):
▶ 0 for observations that are not right-censored by LF;
▶ 1/{Ŝ1(T̃i | Xi )Ĝ1(T̃i | Xi )} for observations with an LF event

happened at time T̃i .
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