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Abstract

Randomized saturation designs are two-stage experiments: they first randomly assign treatment

probabilities over the clusters and then randomly assign the treatment to the units within the clusters.

The existing literature on randomized saturation designs focuses on estimating within-cluster spillover

effects by assuming away between-cluster spillover effects. However, the units may interact across clusters

in many practical randomized saturation designs. A leading example is that some units are geographically

close to each other, so spillover effects arise across clusters. Based on the potential outcomes framework,

we formulate the causal inference problem of estimating within-cluster and between-cluster spillover

effects in randomized saturation designs. We clarify the causal estimands and establish the statistical

theory for estimation and inference. We also apply our method to analyze a recent randomized saturation

design of cash transfer on household expenditure in Kenya.
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1 Introduction

Randomized saturation designs have become increasingly common across disciplines for studying spillovers

and interference, with applications spanning economics (e.g., Crépon et al. 2013; Baird et al. 2018; Egger

et al. 2022), public health (e.g., Melis et al. 2005; Benjamin-Chung et al. 2018), and political science (e.g.,

Sinclair et al. (2012)). Most existing studies consider only within-cluster interference and assume there is no

interference between clusters (Hudgens and Halloran, 2008; Basse and Feller, 2018; Jiang et al., 2023).

However, in some real-world settings, this assumption may not hold. A leading motivating example is the

study by Egger et al. (2022), which implemented a randomized saturation design to evaluate the economic

impacts of a large-scale cash transfer program in rural Kenya between 2014 and 2017. The study area consists

∗The first two authors contributed equally to this work.
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of 653 villages nested within 155 sublocations across two counties. Sublocations are administrative units,

and villages within the same sublocation often share common markets, social ties, and economic connections.

The randomization proceeded in two stages following a randomized saturation design. In the first stage,

sublocations were randomly assigned to high- or low-saturation groups. In the second stage, within each high-

saturation sublocation, two-thirds of villages were randomly assigned to treatment, while in low-saturation

sublocations, one-third of villages were treated. All eligible households in treated villages received transfers.

In this design, there are two possible types of interference: (i) within-sublocation interference, where the

outcome of a village may be affected by the treatment status of other villages in the same sublocation, and

(ii) between-sublocation interference, where the outcome of a village may also be affected by the treatment

of villages from different sublocations that are geographically close.

To make the ideas precise, we start by introducing some notation. Villages are grouped into administrative

sublocations, and let k(i) denote the sublocation to which village i belongs. Some villages are close to one

another, and we use Gi to represent the set of villages that are geographically close (for example, within a

certain distance) to village i. Let Ai ∈ {0, 1} denote the binary treatment of each village, with Ai = 1 if the

village i was assigned a cash transfer, and Ai = 0 otherwise.

When there is interference, a village’s outcome can depend not only on its own treatment but also on the

treatments received by other villages. To describe this dependence, we use the concept of an exposure map-

ping (Aronow and Samii, 2017). In our setting, an exposure mapping summarizes how the treatments received

by other villages, together with village i’s own treatment, combine to determine how much exposure village

i experiences that affects its outcome. Specifically, we define an exposure mapping di(A) = (Ai, Si, Hi),

where Ai is the village’s own treatment, Si summarizes the treatment status of other villages in the same

sublocation as village i, capturing within-sublocation exposure, and Hi summarizes the treatment status of

nearby villages located in different sub locations, capturing between-sublocation exposure. For each village

i, we can write Si as Si = fi{Aj : k(j) = k(i)}, which is a function of the treatment assignments of other

villages within the same sublocation. The mapping fi is allowed to vary across units. Similarly, we can write

Hi as Hi = gi{Aj : k(j) ̸= k(i), j ∈ Gi}, which is a function of the treatment assignments of nearby villages

outside i’s sublocation. The mapping gi may also vary across units.

As an example, consider the following exposure mapping:

Si = 1

{∑
j ̸=i 1{k(j) = k(i)}Aj∑
j ̸=i 1{k(j) = k(i)}

>
1

2

}
,

Hi = 1

{∑n
j=1 1{k(j) ̸= k(i), j ∈ Gi}Aj∑n
j=1 1{k(j) ̸= k(i), j ∈ Gi}

>
1

2

}
.

Here, Si indicates whether more than half of the other villages in the same sublocation as village i are

treated, and Hi indicates whether more than half of the nearby villages in different sublocations are treated.

Related work. Most methodological studies on randomized saturation designs focus on within-cluster

interference. The only recent work that explicitly allows for interference between clusters is Leung (2025),

who studies cluster-randomized trials with cross-cluster interference. Leung (2025) primarily focuses on
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improving estimators for direct effects and indirect effects related to treatment saturation to reduce bias

when interference extends beyond cluster boundaries. In contrast, our study directly models and estimates

the between-cluster spillover effects themselves, providing both identification results and estimators that

explicitly account for cross-cluster dependence.

Another related line of work is spatial interference, where researchers study interference that arises

through geographic proximity or distance-based exposure (Papadogeorgou et al., 2022; Giffin et al., 2023;

Wang et al., 2025). In contrast, we also consider administrative-level interference, where within-sublocation

interference may occur even when two villages are not geographically close but belong to the same adminis-

trative unit.

Organization of the paper The paper proceeds as follows. Section 2 introduces a set of causal estimands

that capture both the direct effects of the treatment and the indirect effects arising from administrative and

geographic interference. Section 3 presents point estimators for these causal estimands. Section 4 provides

their theoretical properties, including consistency, asymptotic normality, and expressions for the asymptotic

variance. Section 5 provides variance estimators based on these theoretical results and shows that they lead

to asymptotically valid confidence intervals. Section 6 implements the proposed estimators and inference

methods in the cash transfer study of Egger et al. (2022). Section 7 concludes with a discussion of future

research directions.

2 Causal estimands of interest

2.1 Conditional causal effects

Conditional direct effects. We first consider the direct effect of the treatment, holding (S,H) at a fixed

level (s, h). Define

de(s, h) = n−1
n∑
i=1

Yi(1, s, h)− n−1
n∑
i=1

Yi(0, s, h).

The quantity de(s, h) represents the conditional direct effect of treatment Ai on the outcome, while holding

the exposure variables (Si, Hi) fixed at values (s, h).

Conditional indirect effects. We consider two types of indirect effects corresponding to the two sources

of interference: within-cluster and between-cluster spillover effects.

For within-cluster indirect effects, we define the within-cluster conditional indirect effect of Si on the

outcome as

wie(s, s′, h) = n−1
n∑
i=1

Yi(0, s, h)− n−1
n∑
i=1

Yi(0, s
′, h).

The quantity wie(s, s′, h) captures the effect of changing the proportion of treated villages in the same
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sublocation (from s to s′) on the outcome of village i, while holding its own treatment fixed at zero and the

between-cluster exposure Hi at level h.

For between-cluster indirect effects, similarly, we define the between-cluster conditional indirect effect of

Hi on the outcome as

bie(s, h, h′) = n−1
n∑
i=1

Yi(0, s, h)− n−1
n∑
i=1

Yi(0, s, h
′).

The quantity bie(s, h, h′) captures the effect of changing the level of between-cluster exposure from h to h′,

with the own treatment fixed at zero and the within-cluster exposure Si fixed at level s.

We can view this setup as a 23 factorial experiment defined by the three factors (Ai, Si, Hi). Although

many other causal contrasts can be defined in this framework, we focus on these three effects, which are most

relevant to our empirical motivation. See Zhao and Ding (2022b) for a more general discussion on factorial

experiments.

2.2 In-policy causal effects

In practice, we can report the aggregated version of the causal estimands by marginalizing over the imple-

mented policy distributions.

Marginal direct effect. We first consider the direct effect of the treatment, averaging over the conditional

distribution of (Si, Hi). Define

de = n−1
n∑
i=1

EA(−i)|Ai=1 {Yi(1, Si, Hi)} − n−1
n∑
i=1

EA(−i)|Ai=0 {Yi(0, Si, Hi)} (1)

= n−1
n∑
i=1

∑
s=0,1

∑
h=0,1

pr(Si = s,Hi = h | Ai = 1)Yi(1, s, h)

−n−1
n∑
i=1

∑
s=0,1

∑
h=0,1

pr(Si = s,Hi = h | Ai = 0)Yi(0, s, h),

where EA(−i)|Ai=a(·) denotes the expectation with respect to the conditional distribution of A(−i), the vector

of treatment assignments for all villages other than i, given Ai = a for a = 0, 1.

de represents the marginal direct effect of treatment Ai, marginalizing over the distribution of treatments

for all other villages. Therefore, by definition, de depends on the treatment assignment mechanism.

Marginal indirect effects. We again consider the two types of indirect effects corresponding to the two

sources of interference: within-cluster and between-cluster spillovers.

For within-cluster indirect effects, we define the marginal within-cluster indirect effect of Si on the

outcome as

wie(s, s′) = n−1
n∑
i=1

EA(−i)|(Ai,Si)=(0,s) {Yi(0, s,Hi)} − n−1
n∑
i=1

EA(−i)|(Ai,Si)=(0,s′) {Yi(0, s′, Hi)}
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= n−1
n∑
i=1

∑
h=0,1

pr(Hi = h | Ai = 0, Si = s)Yi(0, s, h)

−n−1
n∑
i=1

∑
h=0,1

pr(Hi = h | Ai = 0, Si = s′)Yi(0, s
′, h),

where EA(−i)|(Ai,Si)=(0,s)(·) denotes expectation with respect to the distribution of A(−i) conditional on

Ai = 0 and Si = s. The quantity wie(s, s′) is a marginal version of the contrasts, marginalized over the

conditional distribution of other villages’ treatments given (Ai, Si) = (0, s) and (Ai, Si) = (0, s′), respectively.

As with the marginal direct effect, this definition depends on the treatment assignment mechanism.

For between-cluster indirect effects, similarly, we define the marginal between-cluster indirect effect of Hi

on the outcome as

bie(h, h′) = n−1
n∑
i=1

EA(−i)|(Ai,Hi)=(0,h) {Yi(0, Si, h)} − n−1
n∑
i=1

EA(−i)|(Ai,Hi)=(0,h′) {Yi(0, Si, h′)}

= n−1
n∑
i=1

∑
s=0,1

pr(Si = s | Ai = 0, Hi = h)Yi(0, s, h)

−n−1
n∑
i=1

∑
s=0,1

pr(Si = s | Ai = 0, Hi = h′)Yi(0, s, h
′),

where EA(−i)|(Ai,Hi)=(0,h)(·) denotes expectation conditional on Ai = 0 and Hi = h. The quantity bie(h, h′)

is the corresponding marginal effect, integrating over the distribution of other villages’ treatments given

(Ai, Hi) = (0, h) and (Ai, Hi) = (0, h′).

Throughout, we define these indirect effects holding the treatment status Ai = 0 following Hudgens and

Halloran (2008), though we can similarly define analogous indirect effects holding at Ai = 1.

If the treatment assignments Ai are independent across units, such as under Bernoulli randomiza-

tion within each sublocation, then the conditional expectations EA(−i)|Ai=a(·), EA(−i)|(Ai,Si)=(0,s)(·), and
EA(−i)|(Ai,Hi)=(0,h)(·) reduce to expectations over the joint distribution of (Si, Hi), the marginal distribution

of Hi, and the marginal distribution of Si, respectively. In this case, the marginal causal effects simplify to

de = n−1
n∑
i=1

∑
s=0,1

∑
h=0,1

pr(Si = s,Hi = h)Yi(1, s, h)− n−1
n∑
i=1

∑
s=0,1

∑
h=0,1

pr(Si = s,Hi = h)Yi(0, s, h),

wie(s, s′) = n−1
n∑
i=1

∑
h=0,1

pr(Hi = h)Yi(0, s, h)− n−1
n∑
i=1

∑
h=0,1

pr(Hi = h)Yi(0, s
′, h),

bie(h, h′) = n−1
n∑
i=1

∑
s=0,1

pr(Si = s)Yi(0, s, h)− n−1
n∑
i=1

∑
s=0,1

pr(Si = s)Yi(0, s, h
′).

All quantities are defined conditional on the realization of the first-stage randomization, which determines

the distribution of A.
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2.3 Policy-specific causal estimands

In this section, we further define estimands that compare two policies, similar to Hudgens and Halloran

(2008). For a specific treatment assignment policy ψ, define the policy-specific direct effect deψ, within-

cluster indirect effect wieψ, and between-cluster indirect effect bieψ as follows

deψ = n−1
n∑
i=1

Eψ{Yi(1, Si, Hi)} − n−1
n∑
i=1

Eψ{Yi(0, Si, Hi)},

wieψ = n−1
n∑
i=1

Eψ {Yi(0, 1, Hi)} − n−1
n∑
i=1

Eψ {Yi(0, 0, Hi)} ,

bieψ = n−1
n∑
i=1

Eψ {Yi(0, Si, 1)} − n−1
n∑
i=1

Eψ {Yi(0, Si, 0)} ,

where the subscript ψ denotes marginalization of (Si, Hi) conditional on Ai = a under the distribution

induced by policy ψ for a = 0, 1 in the definition of deψ, marginalization of Hi conditional on (Ai, Si) = (0, s)

under the distribution induced by policy ψ for s = 0, 1 in the definition of wieψ, and marginalization of Si

conditional on (Ai, Hi) = (0, h) under the distribution induced by policy ψ for h = 0, 1 in the definition of

bieψ. In particular, if we take ψ as the treatment policy implemented in the study, the above effects recover

the in-policy causal estimands we defined in the previous section.

For two policies ψ1, ψ2, we can therefore compare their direct effect and indirect effects by the contrasts

deψ1 − deψ2 , wieψ1 −wieψ2 , and bieψ1 − bieψ2 , respectively.

3 Estimation by inverse propensity score weighting

3.1 Averages of the potential outcomes and conditional effects

We first construct an estimator for the average potential outcome,

Ȳ (a, s, h) = n−1
n∑
i=1

Yi(a, s, h),

for given (a, s, h). Consider the Horvitz–Thompson estimator

Ŷ ht(a, s, h) = n−1
n∑
i=1

Ii(a, s, h)

πi(a, s, h)
Yi,

and the Hájek estimator

Ŷ haj(a, s, h) = n−1
n∑
i=1

Ii(a, s, h)

πi(a, s, h)
Yi

/
n−1

n∑
i=1

Ii(a, s, h)

πi(a, s, h)
,

where Ii(a, s, h) = 1{Ai = a, Si = s,Hi = h} and πi(a, s, h) = pr(Ai = a, Si = s,Hi = h) is the corre-

sponding propensity score. These propensity scores are determined by both the experimental design and the
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network structure. In principle, they depend deterministically on the treatment assignment mechanism and

definition of the exposure mapping, but directly calculating them can become infeasible as the treatment

space grows. A practical alternative is to approximate these probabilities using Monte Carlo simulations.

Under randomization, the estimator Ŷ ht(a, s, h) is unbiased to Ȳ (a, s, h). The Hájek estimator Ŷ haj(a, s, h)

is not unbiased in finite sample but is consistent to Ŷ haj(a, s, h) and generally has more stable finite sam-

ple performance. Therefore, the corresponding Horvitz–Thompson estimators are unbiased, and the Hájek

estimators are consistent.

We then propose the following estimators for the conditional direct and indirect effects defined in Sec-

tion 2. For ∗ ∈ {ht,haj}, construct

d̂e
∗
(s, h) = Ŷ ∗(1, s, h)− Ŷ ∗(0, s, h),

ŵie
∗
(s, s′, h) = Ŷ ∗(0, s, h)− Ŷ ∗(0, s′, h),

b̂ie
∗
(s, h, h′) = Ŷ ∗(0, s, h)− Ŷ ∗(0, s, h′).

3.2 In-policy and policy-specific causal effects

We propose to use a policy-specific re-weighting to estimate the policy-specific effects. Under different

policies, the joint distribution of (Ai, Si, Hi) will, in general, differ. For a given policy of interest, the

policy-specific causal effects are defined as marginal expectations of the potential outcomes, where the

marginalization is taken with respect to the policy-induced distribution of (Ai, Si, Hi), as defined in Sec-

tions 2.2 and 2.3. Each estimand involves a reweighted average of potential outcomes, where the weights

depend on the distribution of (Si, Hi) under a specific policy. Accordingly, to estimate these effects, we

construct a class of reweighting estimators that account for the policy-induced exposure distribution. More

concretely, for a given set of weights γi(a, s, h), define the following class of Horvitz–Thompson estimators

indexed by Γ = {γi(a, s, h)}:

Ŷ ht(a, s, h; Γ) = n−1
n∑
i=1

Ii(a, s, h)γi(a, s, h)

πi(a, s, h)
Yi,

and the corresponding class of Hájek estimators:

Ŷ haj(a, s, h; Γ) = n−1
n∑
i=1

γi(a, s, h) · n−1
n∑
i=1

Ii(a, s, h)γi(a, s, h)

πi(a, s, h)
Yi

/
n−1

n∑
i=1

Ii(a, s, h)γi(a, s, h)

πi(a, s, h)
.

These estimators form a general framework for constructing estimators of the policy-specific direct and

indirect effects, as introduced in Section 2.

To operationalize the reweighting idea, we specify weight functions for each type of causal effect. Let

Γde
ψ , Γbie

ψ , and Γwie
ψ denote the corresponding classes of weighting functions for the direct, within-sublocation

indirect, and between-sublocation indirect effects, respectively. The elements of these classes are defined as

γdei,ψ(a, s, h) = prψ(Si = s,Hi = h | Ai = a),
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γwie
i,ψ (a, s, h) = prψ(Hi = h | Ai = a, Si = s),

γbiei,ψ(a, s, h) = prψ(Si = s | Ai = a,Hi = h).

These probabilities describe the distribution of (Si, Hi) under a specific policy ψ, which serve as reweighting

terms in our estimators. For either the Horvitz–Thompson or Hájek estimator (∗ ∈ {ht,haj}), we then define

the corresponding estimators for the policy-specific causal effects as:

d̂e
∗
ψ =

∑
s,h=0,1

{Ŷ ∗(1, s, h; Γde
ψ )− Ŷ ∗(0, s, h; Γde

ψ )},

ŵie
∗
ψ =

∑
h=0,1

{Ŷ ∗(0, 1, h; Γwie
ψ )− Ŷ ∗(0, 0, h; Γwie

ψ )},

b̂ie
∗
ψ =

∑
s=0,1

{Ŷ ∗(0, s, 1; Γbie
ψ )− Ŷ ∗(0, s, 0; Γbie

ψ )}.

As a special case, if we take ψ = ϕ as the treatment policy actually implemented in the real study, these

expressions yield the in-policy estimators for the marginal marginal causal effects:

d̂e
∗
ϕ =

∑
s,h=0,1

{Ŷ ∗(1, s, h; Γde
ϕ )− Ŷ ∗(0, s, h; Γde

ϕ )},

ŵie
∗
ϕ =

∑
h=0,1

{Ŷ ∗(0, 1, h; Γwie
ϕ )− Ŷ ∗(0, 0, h; Γwie

ϕ )},

b̂ie
∗
ϕ =

∑
s=0,1

{Ŷ ∗(0, s, 1; Γbie
ϕ )− Ŷ ∗(0, s, 0; Γbie

ϕ )}.

Remark 3.1 (Covariate adjustment estimator). Let Xi denote the vector of centered pre-treatment covariates

for unit i, augmented with a constant term in the first position. For each exposure configuration (a, s, h) ∈
{0, 1}3, we define a covariate-adjusted estimator of the average potential outcome Ȳ (a, s, h) as

Ŷ ca(a, s, h) = n−1
n∑
i=1

{
1i(a, s, h)

πi(a, s, h)
(Yi − β̂t

a,s,hXi) + β̂t
a,s,hXi

}
,

where β̂a,s,h is the ordinary least squares coefficient from regressing Yi on Xi within the subsample (Ai, Si, Hi) =

(a, s, h). The estimator Ŷ ca(a, s, h) combines regression adjustment with inverse probability weighting. It is

a standard strategy in the literature and we omit the development of its theoretical properties here.

For the conditional causal effects, we take differences between the corresponding Ŷ ca(a, s, h) estimators.

For the marginal causal effects, we form weighted averages of Ŷ ca(a, s, h)’s and take contrasts, using the

corresponding policy-induced probabilities as weights.
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4 Theoretical properties

4.1 Asymptotic variance

We first derive the asymptotic variance of the reweighted estimators, which serves as the building block for

our asymptotic analysis. Let Γ(a, s, h) = diag{γi(a, s, h)} denote the n × n diagonal matrix with diagonal

terms equal to the weights γi(a, s, h) for i = 1, . . . , n. To characterize dependence induced by the design,

we further define two n × n matrices, Λ(a, s, h) and Λ(a, s, h; a′, s′, h′), that will be crucial in defining the

asymptotic variance:

Λ(i,j)(a, s, h) = 1{j = i}1− πi(a, s, h)

πi(a, s, h)
+ 1{j ̸= i}πij(a, s, h; a, s, h)− πi(a, s, h)πj(a, s, h)

πi(a, s, h)πj(a, s, h)
,

Λ(i,j)(a, s, h; a
′, s′, h′) = −1{j = i}+ 1{j ̸= i}πij(a, s, h; a

′, s′, h′)− πi(a, s, h)πj(a
′, s′, h′)

πi(a, s, h)πj(a′, s′, h′)
.

In practice, these second-order inclusion probabilities πij(a, s, h; a
′, s′, h′) can be simulated given a known

randomization policy and network structure. See Aronow and Samii (2017) for further discussion.

In addition, the asymptotic variance depends on whether the potential outcomes are centered, and if so,

around what quantity. The Horvitz–Thompson estimator uses the raw potential outcomes and therefore has

a variance expression directly in terms of Yi(a, s, h), so we define Y ht
i (a, s, h) = Yi(a, s, h). In contrast, the

Hájek estimator normalizes the weights by an estimated denominator, which induces additional dependence

across units. It is therefore convenient to rewrite the Hájek estimator as an inverse probability weighting

estimator applied to centered potential outcomes. Accordingly, for the Hájek form we define

Y haj
i (a, s, h) = Yi(a, s, h)−

n−1
∑n
i=1 γi(a, s, h)Yi(a, s, h)

n−1
∑n
i=1 γi(a, s, h)

.

Let Y ∗(a, s, h) = (Y ∗
1 (a, s, h), . . . , Y

∗
n (a, s, h))

t denote the vector of potential outcomes for all units.

Theorem 4.1. For a reweighting regime Γ and ∗ ∈ {ht,haj}, the asymptotic variance of Ŷ ∗(a, s, h; Γ) at a

fixed treatment and exposure mapping level (a, s, h) is

avar{Ŷ ∗(a, s, h; Γ)} = n−2Y ∗(a, s, h)tΓ(a, s, h)Λ(a, s, h)Γ(a, s, h)Y ∗(a, s, h),

and the asymptotic covariance for a given pair (a, s, h) and (a′, s′, h′) is

acov{Ŷ ∗(a, s, h; Γ), Ŷ ∗(a′, s′, h′; Γ)} = n−2Y ∗(a, s, h)tΓ(a, s, h)Λ(a, s, h; a′, s′, h′)Γ(a′, s′, h′)Y ∗(a′, s′, h′),

where avar(·) and acov(·, ·) denote the asymptotic variance and asymptotic covariance, respectively.

4.2 Consistency and asymptotic normality

We next establish the asymptotic properties of the proposed estimators. Following the framework of Aronow

and Samii (2017) for inverse probability weighting estimators under network interference and Chen and
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Shao (2004) for central limit theorems under network dependence, we establish consistency and asymptotic

normality under the following four regularity conditions.

Assumption 1 (Bounded potential outcomes). There exists a constant CY <∞ such that |Yi(a, s, h)| ≤ CY

for all i = 1, . . . , n and all (a, s, h) ∈ {0, 1}3.

Assumption 1 is standard in the literature and aligns with many practical metrics (Aronow and Samii,

2017; Gao and Ding, 2025; Lu et al., 2025). Although it can be relaxed, we keep the boundedness assumption

for clarity and to simplify the presentation.

Assumption 2 (Positivity of exposure probabilities). There exist constants 0 < cπ < cπ < 1 such that

cπ ≤ πi(a, s, h) ≤ cπ for every unit i and all exposure configurations (a, s, h).

Assumption 2 extends the classical positivity assumption to the interference setting. It requires that

every exposure combination has a non-negligible probability of occurring. This ensures that the invrese

probability weights remain well-behaved and do not explode, which is essential both for identification of the

causal estimands and for controlling estimator variance.

Assumption 3 (Bounded network degree). There exists a finite constant ∆ < ∞ such that each unit has

at most ∆ neighbors: max(|{j : k(j) = k(i)} ∪ Gi|) ≤ ∆.

Assumption 3 imposes a standard sparsity condition on the interference network: each unit has a relatively

sparse number of neighbors. This condition is important for guaranteeing a stable asymptotic distribution

for the estimators, as it prevents the dependence structure from becoming too dense shen n grows. Dense

networks can violate the classical dependency-graph conditions required for central limit theorems, and in

such regimes we would need either additional restrictions on how quickly degrees are allowed to grow or

alternative asymptotic framework designed for dense networks. In our empirical application with n = 653

villages, this assumption holds with ∆ ≈ 20, corresponding to the maximum number of villages in any

sublocation plus nearby villages within 4 km.

Assumption 4 (Bounded order of dependence). The exposure mappings (Ai, Si, Hi) satisfy a bounded

dependence condition: for any two units i and j with graph distance greater than m (where graph distance

is measured on the the union of sublocation and neighborhood network), the random vectors (Ai, Si, Hi) and

(Aj , Sj , Hj) are independent. The constant m <∞ is the order of dependence.

Assumption 4 describes how far dependence can propagate in the interference structure. It requires that

units sufficiently far apart in the network behave independently, which is another key requirement for applying

the dependency graph central limit theorems. Intuitively, the dependence induced by randomization does not

extend indefinitely: units outside each other’s m-step neighborhoods cannot influence each other’s exposure

conditions. In our empirical setting, the bounded dependence assumption holds with m = 2 because each

village’s exposure depends only on its own sublocation and immediate neighbors, and any units separated

by two or more steps behave independently conditional on the randomization.

Under these assumptions, we establish the following asymptotic results for our policy-specific estimators.
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Theorem 4.2 (Consistency and asymptotic normality). Suppose Assumptions 1–4 hold. Let Ŷ ∗
Γ and Ȳ ∗

Γ

denote the vectors of estimators and average weighted potential outcomes across all exposure combinations

under weighting regime Γ, for ∗ ∈ {ht,haj}. Then as n→ ∞:

1. Consistency: For any weight function Γ and any exposure (a, s, h), we have for ∗ ∈ {ht,haj},

Ŷ ∗
Γ

p−→ ȲΓ.

Consequently, all proposed estimators for the causal effects, including the conditional effects, the in-

policy marginal effects, and the policy-specific effects, are consistent for their respective population

estimands.

2. Asymptotic normality: The joint vector of estimators satisfies

acov(Ŷ ∗
Γ )−1/2

(
Ŷ ∗
Γ − ȲΓ

)
d−→ N (0, I8)

for ∗ ∈ {ht,haj}, where I8 is the identity matrix of dimension 8.

5 Variance estimation and inference

5.1 Variance estimation

The asymptotic variances in Theorem 4.1 require knowledge of the true potential outcomes Yi(a, s, h), which

are not directly observable. In this section, we propose conservative variance estimators that rely only on

observed data.

Define the aggregated vector Ŷ ∗ = (Ŷ ∗
1 , . . . , Ŷ

∗
n )

t, where for ∗ ∈ {ht,haj}, Ŷ ht
i = Ii(a, s, h)Yi/πi(a, s, h),

and Ŷ haj
i = Ii(a, s, h)Ỹi/πi(a, s, h) where

Ỹi = Yi −
Ŷ haj(a, s, h; Γ)

n−1
∑n
i=1 γi(a, s, h)

.

Next, define the n× n matrix Ω with entries:

Ω(i,j) =
πij(a, s, h; a, s, h)− πi(a, s, h)πj(a, s, h)

πij(a, s, h; a, s, h)
,

which is a reweighted version ofΛ(i,j). Then we construct the following variance estimator for var{Ŷ ∗(a, s, h; Γ)}
for ∗ ∈ {ht,haj}:

v̂ar{Ŷ ∗(a, s, h; Γ)} = n−2(Ŷ ∗)tΓ(a, s, h)Ω(a, s, h)Γ(a, s, h)Ŷ ∗.

For conditional causal effects such as d̂e
∗
(s, h) = Ŷ ∗(1, s, h) − Ŷ ∗(0, s, h), the true asymptotic variance

includes the covariance term that depends on the joint of different potential outcomes and is not identified.
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Decomposing the variance,

var{d̂e∗(s, h)} = var{Ŷ ∗(1, s, h)}+ var{Ŷ ∗(0, s, h)} − 2cov{Ŷ ∗(1, s, h), Ŷ ∗(0, s, h)},

reveals that the two variance components are identifiable but the covariance is not. For valid inference, we

obtain an upper bound that is identifiable based on the observed data for the covariance term. We use the

fact that cov2{Ŷ ∗(1, s, h), Ŷ ∗(0, s, h)} ≤ var{Ŷ ∗(1, s, h)}var{Ŷ ∗(0, s, h)} guaranteed by the Cauchy–Schwarz

inequality, with equality holding when the two estimators Ŷ ∗(1, s, h) and Ŷ ∗(0, s, h) are perfectly correlated.

This motivates the following conservative variance estimator for ∗ ∈ {ht,haj},

v̂ar{d̂e∗(s, h)} =
[
ŝe{Ŷ ∗(1, s, h)}+ ŝe{Ŷ ∗(0, s, h)}

]2
.

We can similarly construct conservative variance estimators for other conditional causal effects.

For policy-specific causal effects, such as the in-policy marginal direct effect d̂e
∗
=
∑
s,h{Ŷ ∗(1, s, h; Γde

ϕ )−
Ŷ ∗(0, s, h; Γde

ϕ )}, we similarly use v̂ar(d̂e
∗
) = [ŝe{Ŷ ∗(1, s, h; Γde

ϕ )}+ ŝe{Ŷ ∗(0, s, h; Γde
ϕ )}]2 as a variance esti-

mator. We can similarly construct conservative variance estimators for other policy-specific causal effects.

5.2 Inference

In this section, we provide asymptotic results for the variance estimator to support valid inference.

Corollary 5.1 (Asymptotic validity of confidence intervals). Under Assumptions 1–4,

1. The variance estimators v̂ar{Ŷ ∗(a, s, h; Γ)} for ∗ ∈ {ht,haj} is consistent:

v̂ar{Ŷ ∗(a, s, h; Γ)} p−→ var{Ŷ ∗(a, s, h; Γ)},

and therefore for a single exposure configuration (a, s, h), the confidence interval

Ŷ ∗(a, s, h; Γ)± zα/2 · ŝe{Ŷ ∗(a, s, h; Γ)}

achieves asymptotic coverage rate 1− α for ∗ ∈ {ht,haj}.
2. For conditional causal effects and policy-specific causal effects, the conservative variance estimator

based on the Cauchy–Schwarz bound provides asymptotically valid confidence intervals with asymptotic

coverage rate at least 1 − α. In general, the actual coverage may exceed the nominal level due to the

conservativeness of the bound.

Remark 5.1. If the second-order inclusion probability πij(a, s, h; a, s, h) = 0 for some pair (i, j), the variance

of Ŷ ∗(a, s, h) cannot be consistently estimated either. We can construct conservative estimators for the

variance term following the estimators proposed in Aronow and Samii (2017).

12



6 Real data analysis

6.1 Analysis paradigm

We apply our methodology to re-analyze the cash transfer experiment studied in Egger et al. (2022). The

experiment assigned villages to treatment using a two-stage randomized saturation design across 653 villages

in 155 sublocations, resulting in 328 treated and 325 control villages. Our empirical analysis focuses on four

village-level enterprise outcomes measured at endline: winsorized average profit, revenue, total cost, and

wage bill. We apply our proposed methodology to quantify direct and spillover effects.

A key feature of this setting is that interference may arise through two distinct channels: (i) villages in

the same sublocation share administrative and economic ties, and (ii) nearby villages in different sublocations

may also influence each other through geographic proximity. To capture these two sources of interference,

we construct two binary exposure variables Si and Hi following Section 2. For Si, we summarize treatment

saturation within i’s sublocation. For Hi, we build a geographic network using distance data, identifying for

each village i up to three nearest neighbors outside its sublocation and within 4 km.

Because both Si and Hi depend on the treatment assignments of multiple nearby villages, the propensity

scores πi(a, s, h) are not available in closed form due to the complex dependency between (Ai, Si, Hi) induced

by the network structure. We therefore estimate the propensity scores πi(a, s, h) and the second-order

inclusion probabilities πij(a, s, h; a
′, s′, h′) using 100,000 Monte Carlo draws following Aronow and Samii

(2017). Table 1 reports summary statistics for the estimated propensity scores across the 653 villages in our

sample.

Table 1: Summary statistics of estimated propensity scores

Exposure Mean Std Median

(A = 0, S = 0, H = 0) 0.184 0.175 0.137
(A = 0, S = 0, H = 1) 0.143 0.141 0.099
(A = 0, S = 1, H = 0) 0.088 0.062 0.071
(A = 0, S = 1, H = 1) 0.086 0.068 0.068
(A = 1, S = 0, H = 0) 0.118 0.078 0.088
(A = 1, S = 0, H = 1) 0.098 0.065 0.078
(A = 1, S = 1, H = 0) 0.139 0.143 0.069
(A = 1, S = 1, H = 1) 0.144 0.154 0.051

Marginal probabilities
pr(Ai = 1) 0.499 0.167 0.500
pr(Si = 1) 0.458 0.342 0.500
pr(Hi = 1) 0.471 0.224 0.500

Notes: Propensity scores are estimated using 100,000 Monte Carlo draws. Marginal probabilities are computed by summing
the relevant joint propensities for each village. For each village, the eight joint propensities sum to one.
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6.2 Results

We now present the results of our proposed estimators. We organize the results into two parts: Table 2

reports the conditional direct and indirect effects, and Table 3 reports the in-policy marginal direct and

indirect effects. For each estimand, we report three estimators: the Horvitz–Thompson estimator, the Hájek

estimator, and the covariate-adjusted estimator.

Overall, the Hájek estimator provides substantially more precise estimates than the Horvitz–Thompson

estimator, with standard errors typically 50–70% smaller. This is consistent with the well-known finite-

sample efficiency advantages of Hájek estimation (Aronow and Samii, 2017; Ding, 2024; Gao and Ding,

2025). Also, the results are relatively stable between the Hájek and the covariate-adjusted estimator in

terms of both point estimators and the standard error.

Conditional causal effects. Panel A of Table 2 reports the estimated conditional direct effects d̂e
∗
(s, h),

which measure the treatment effect of village i receiving a cash transfer, conditional on its exposure envi-

ronment (Si, Hi) = (s, h).

The results reveal several important patterns. Focusing on the more precise Hájek and covariate-adjusted

estimates, we find significant positive effects on profits and revenues when villages are in high within-

sublocation saturation but low geographic exposure environments (S = 1, H = 0). In this setting, treated

villages experience increases of 3,539 KES in monthly profit (p < 0.01) and 4,159 KES in monthly revenue

(p < 0.01). This suggests that within-sublocation indirect effects create favorable conditions for treated

enterprises to grow.

By contrast, enterprises in villages with low local saturation but high geographic exposure (S = 0, H = 1)

face higher costs and wages, consistent with increased competition for inputs and labor. Effects are close to

zero or negative when both exposure levels are simultaneously high or low, highlighting the importance of

accounting for multiple indirect effect channels.

We next examine the conditional indirect effects, which isolate indirect effect channels by holding the

village’s own treatment status fixed. In addition to the conditional indirect effects introduced in Section 2 for

Ai = 0, we also report estimation results for analogous estimands holding Ai = 1. Panel B of Table 2 reports

the within-sublocation indirect effects, which measure the impact of changing within-sublocation treatment

saturation from low to high, conditional on the village’s own treatment status Ai = a and geographic

exposure Hi = h.

The results reveal distinct patterns depending on treatment status. Among control villages (A = 0), the

Horvitz–Thompson estimator suggests large positive effects on profits and revenues from increased subloca-

tion saturation, though with substantial uncertainty. The Hájek estimator, on the contrary, shows negative

effects when geographic exposure is high (H = 1): control villages in high-saturation sublocations with many

nearby treated villages experience profit and revenue decreases, consistent with competitive pressure from

treated neighbors.

Among treated villages (A = 1), the Hájek estimator finds large positive effects when geographic exposure

is low (H = 0): treated villages benefit substantially from being in high-saturation sublocations when they
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have few treated neighbors outside their sublocation. However, when geographic exposure is also high

(H = 1), these benefits disappear.

Panel C of Table 2 presents the between-sublocation indirect effects, which measure the impact of in-

creasing geographic exposure to treated villages in other sublocations from low to high, conditional on own

treatment Ai = a and within-sublocation saturation Si = s.

These between-sublocation indirect effects are heterogeneous across exposure configurations. Using the

Hájek estimator, control villages in low-saturation sublocations (A = 0, S = 0) experience significant positive

effects from greater geographic exposure to treated villages. This suggests that control villages benefit from

proximity to treated villages, possibly through increased economic activity, though they also face higher

input costs. However, among treated villages in high-saturation sublocations (A = 1, S = 1), the effects are

strongly negative.

In-policy marginal effects. Table 3 reports estimates of the in-policy marginal direct and indirect effects,

where the weighting scheme reflects the exposure distribution induced by the implemented policy. The

marginal direct effect averages over exposure levels using weights γi(a, s, h) = pr(Si = s,Hi = h | Ai =

a), while the within- and between-sublocation indirect effects average over the distributions using weights

pr(Si = s | Ai = a,Hi = h) and pr(Hi = h | Ai = a, Si = s), respectively.

In general, the in-policy marginal causal effects have relatively large standard errors, and most estimates

are not statistically significant. As before, the Hájek and the covariate-adjusted estimators are considerably

more precise, with standard errors roughly 50-60% smaller than the Horvitz–Thompson estimator. The lack

of significance is consistent with the substantial heterogeneity documented in Table 2: when the conditional

causal effects vary strongly across exposure environments, marginalizing over these environments tends to

dilute the signal and reduce statistical power.

7 Discussion

Beyond the nonparametric inverse propensity score weighting estimators developed in Section 3, it is also

natural to consider regression-assisted approaches that partially pool information across exposure config-

urations. Because our estimands involve eight possible (a, s, h) combinations, some cells may be sparsely

populated in the real data. A partially saturated regression that restricts the three-way interaction and

some two-way interactions among (A,S,H) is of interest as a model-assisted perspective. The idea connects

directly to the model-assisted framework of Zhao and Ding (2022a) and to classical analyses of 23 factorial

designs. In Section A.2 of the supplementary material, we explore the perspective by considering a regres-

sion that includes main effects of (A,S,H) and selected two-way interactions, with S and H centered at

their population means. We provide causal interpretations of the regression coefficients under independent

Bernoulli assignment.

Throughout this paper, we have focused on binary exposure mappings for (Si, Hi), which leads to a

finite number of exposure environments. This setting is conceptually simple and allows for nonparametric

identification of all relevant average potential outcomes. The framework can be extended to categorical
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Table 2: Conditional direct and indirect effects

Panel A. Conditional direct effects: d̂e∗(s, h)

Horvitz–Thompson Hájek Covariate-adjusted

(s, h) Profit Revenue Costs Wage Profit Revenue Costs Wage Profit Revenue Costs Wage

(0, 0) 2,142 3,739 542 406 −360 −46 200 163 −101 217 172 136
(2,180) (3,302) (352) (262) (909) (1,143) (135) (116) (883) (1,117) (137) (117)

(0, 1) 3,211 5,841 825∗ 625∗ −558 300 329∗∗ 268∗ −835 −124 260∗ 211
(2,406) (3,940) (476) (361) (616) (877) (168) (145) (559) (696) (148) (131)

(1, 0) 272 −440 −300 −253 3,539∗∗∗ 4,159∗∗∗ 87 23 2,817∗∗ 3,043∗∗∗ −150 −181
(3,431) (4,518) (469) (372) (1,263) (1,247) (169) (159) (1,268) (1,167) (157) (149)

(1, 1) −3,233 −4,785 −458 −340 −227 140 115 73 37 481 142 95
(2,225) (3,364) (353) (260) (688) (825) (158) (134) (677) (776) (153) (131)

Panel B. Conditional within-sublocation indirect effects: ŵie∗(a, h)

Horvitz–Thompson Hájek Covariate-adjusted

(a, h) Profit Revenue Costs Wage Profit Revenue Costs Wage Profit Revenue Costs Wage

(0, 0) 2,881 4,420 584∗ 457∗ −182 −304 132 134 67 363 333∗∗ 304∗∗∗

(1,895) (2,813) (337) (262) (837) (961) (170) (148) (823) (943) (159) (140)

(0, 1) 3,078 4,848 541 396 −1,136∗ −1,579∗ −92 −67 −1,333∗∗ −1,728∗∗ −76 −50
(2,072) (3,131) (331) (248) (671) (813) (138) (121) (654) (750) (132) (116)

(1, 0) 1,011 242 −258 −202 3,718∗∗∗ 3,902∗∗∗ 18 −6 2,985∗∗ 3,189∗∗ 11 −13
(3,715) (5,007) (483) (372) (1,335) (1,429) (134) (127) (1,327) (1,342) (134) (126)

(1, 1) −3,366 −5,778 −741 −569 −805 −1,738∗∗ −306 −262∗ −461 −1,124 −194 −166
(2,558) (4,173) (498) (373) (633) (889) (188) (158) (581) (722) (169) (147)

Panel C. Conditional between-sublocation indirect effects: b̂ie∗(a, s)

Horvitz–Thompson Hájek Covariate-adjusted

(a, s) Profit Revenue Costs Wage Profit Revenue Costs Wage Profit Revenue Costs Wage

(0, 0) −598 −964 −82 −52 1,330∗∗ 1,950∗∗∗ 222∗∗ 176∗∗ 1,442∗∗∗ 1,998∗∗∗ 204∗∗ 161∗∗

(1,458) (2,190) (233) (177) (554) (645) (93) (83) (511) (555) (86) (76)

(0, 1) −402 −537 −125 −113 375 674 −2 −25 42 −92 −204 −194
(2,509) (3,755) (435) (333) (954) (1,128) (214) (186) (967) (1,138) (205) (180)

(1, 0) 471 1,138 200 167 1,132 2,296∗ 350∗ 282 708 1,658 293∗ 236
(3,127) (5,052) (594) (446) (971) (1,374) (209) (178) (930) (1,258) (199) (172)

(1, 1) −3,906 −4,882 −283 −201 −3,391∗∗∗−3,344∗∗∗ 26 25 −2,739∗∗∗−2,654∗∗∗ 88 83
(3,146) (4,127) (387) (299) (997) (944) (112) (106) (978) (805) (104) (101)

Notes: Each panel reports conditional causal effects estimated using Horvitz–Thompson, Hájek, and Covariate-adjusted
estimators. Panel A reports conditional direct effects comparing treated (Ai = 1) versus control (Ai = 0) villages for
each (s, h). Panel B reports conditional within-sublocation indirect effects comparing high (Si = 1) versus low (Si = 0)
saturation levels for each (a, h). Panel C reports between-sublocation indirect effects comparing high (Hi = 1) versus low
(Hi = 0) exposure levels for each (a, s). All monetary values are in Kenyan Shillings (KES) per enterprise per month.
Point estimates are reported in the first line, with robust standard errors in parentheses below. The covariate-adjusted
estimator includes baseline covariates to improve efficiency. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

exposure mappings by defining additional exposure levels, for example, low/medium/high proportions of

treated neighboring villages. However, the number of exposure cells grows quickly with the number of

categories, and the corresponding number of average potential outcomes increases combinatorially. A more

challenging extension involves allowing (Si, Hi) to take continuous values, such as the exact proportion

of treated neighbors within and outside the sublocation. In this case, the object of interest becomes an
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Table 3: In-policy marginal direct and indirect effects

Horvitz–Thompson Hájek Covariate-adjusted

Profit Revenue Costs Wage Profit Revenue Costs Wage Profit Revenue Costs Wage

Marginal direct effect

577 1,180 191 140 335 810 164 121 289 655 99 64
(2,597) (3,930) (476) (370) (1,051) (1,242) (232) (204) (994) (1,119) (215) (191)

Within-sublocation indirect effect

232 360 102 89 −412 −639 15 29 −378 −485 62 67
(1,085) (1,652) (200) (156) (366) (434) (88) (78) (377) (460) (83) (73)

Between-sublocation indirect effect

−374 −565 −49 −33 433 663 74 58 499 682 47 33
(1,385) (2,068) (224) (170) (548) (636) (101) (89) (514) (564) (95) (84)

Notes: This table reports in-policy marginal direct and indirect effects estimates. The marginal direct effect uses weights
γi = πi(·, s, h) that marginalize over the treatment distribution. Within-sublocation spillover effects compare S = 1 to
S = 0 for control and treated villages using weights γi = πi(·, h, ·), while between-sublocation spillover effects compare
H = 1 to H = 0 using γi = πi(·, ·, s). All monetary values are reported in Kenyan Shillings (KES) per enterprise
per month. Point estimates are shown in the first line, with robust standard errors reported in parentheses beneath.
The covariate-adjusted estimator incorporates baseline covariates for improved efficiency. Significance levels: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.01.

exposure-response function (s, h) 7→ Ȳ (a, s, h), and recovering it requires either nonparametric methods or

additional model structure. A fully nonparametric approach would require smoothing or kernel methods over

a two-dimensional continuous exposure space, which may suffer from the curse of dimensionality and require

a large sample size for stable estimation (Kennedy et al., 2017). Alternatively, one may impose parametric

or semiparametric assumptions on the exposure–response relationship to obtain more stable inference at the

cost of additional modeling assumptions.

In our real data analysis, we implemented an intuitive covariate-adjustment strategy, analogous to Lin’s

estimator (Lin, 2013) in the no-interference setting, but without a formal justification for variance reduction

under interference. Recent studies have begun to explore covariate adjustment under various settings with

interference (Gao and Ding, 2025; Lu et al., 2025; Chang, 2025). A natural direction for future research is

to develop a rigorous model-assisted covariate adjustment framework for interference settings, together with

provable guarantees on efficiency gains. We leave it for future work.
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Supplementary Material

A Additional technical results

A.1 Explicit forms of the variance and covariance

In Theorem 4.1, we give a compact form of asymptotic variance and covariance for the reweighting estimators.

In this section, we provide more explicit forms, which are more straightforward and interpretable.

For a reweighting regime Γ and ∗ ∈ {ht,haj}, for a fixed treatment and exposure mapping level (a, s, h),

the asymptotic variance of Ŷ ∗(a, s, h; Γ) is

avar{Ŷ ∗(a, s, h; Γ)}

= n−2
n∑
i=1

1− πi(a, s, h)

πi(a, s, h)
{γi(a, s, h)Y ∗

i (a, s, h)}2

+n−2
n∑
i=1

∑
j ̸=i

πij(a, s, h; a, s, h)− πi(a, s, h)πj(a, s, h)

πi(a, s, h)πj(a, s, h)
γi(a, s, h)γj(a, s, h)Y

∗
i (a, s, h)Y

∗
j (a, s, h)

= n−2Y ∗(a, s, h)tΓ(a, s, h)Λ(a, s, h)Γ(a, s, h)Y ∗(a, s, h).

Similarly, for a pair (a, s, h) and (a′, s′, h′), the asymptotic covariance is

acov{Ŷ ∗(a, s, h; Γ), Ŷ ∗(a′, s′, h′; Γ)}

= −n−2
n∑
i=1

γi(a, s, h)γi(a
′, s′, h′)Y ∗

i (a, s, h)Y
∗
i (a

′, s′, h′)

+n−2
n∑
i=1

∑
j ̸=i

πij(a, s, h; a
′, s′, h′)− πi(a, s, h)πj(a

′, s′, h′)

πi(a, s, h)πj(a′, s′, h′)
γi(a, s, h)γj(a

′, s′, h′)Y ∗
i (a, s, h)Y

∗
j (a

′, s′, h′)

= n−2Y ∗(a, s, h)tΓ(a, s, h)Λ(a, s, h; a′, s′, h′)Γ(a′, s′, h′)Y ∗(a′, s′, h′).

A.2 Partially saturated regression estimator

The inverse probability weighting estimators introduced earlier represent a nonparametric approach, as they

estimate all eight cell-specific means corresponding to (a, s, h) ∈ {0, 1}3. Depending on the sample sizes

available within each cell, this nonparametric strategy may be challenging. An alternative is to come up

with regression models that restrict certain two-way or three-way interactions among A, S, and H. Under

such restrictions, we can pool information across (a, s, h) groups and estimate the resulting estimands via

an ordinal least squares regression. Although we do not pursue this modeling approach in our empirical

analysis, it provides a useful complementary perspective.

Relatedly, it is also useful to consider a model-assisted approach to estimation and inference. While our

main estimands are defined without imposing outcome models, working with a partially saturated regression

can help recover point estimates and variance estimators in a more stable manner, in line with the model-

assisted framework of Zhao and Ding (2022a).
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Motivated by these considerations, the definition of (A,S,H) is reminiscent of factorial regressions in

a 23 factorial experiment (Wu and Hamada, 2011; Zhao and Ding, 2022b). Based on this connection, we

can study the main factorial effects of A, S, and H, as well as selected interaction effects. We explore this

perspective and provide a causal interpretation for these factorial effects.

Concretely, we consider the following partially saturated regression:

Yi ∼ 1 +Ai + S̃i + H̃i +AiS̃i +AiH̃i, (2)

where S̃i and H̃i are the centered versions of Si and Hi, defined by subtracting their population means πS,i

and πH,i:

S̃i = Si − πS,i, H̃i = Hi − πH,i.

These population means depend on the geographic network and can be computed or simulated. This

regression formulation does not include the three-way interaction among (A, S̃, H̃) nor the two-way interac-

tion between S̃ and H̃, and therefore can be viewed as pooling information across the corresponding (a, s, h)

cells.

In the special case where both stages of the randomized saturation design use independent Bernoulli

assignments, (Ai, Si, Hi) are mutually independent and the Ai’s are identically distributed. Under this

setting, the following identification results hold.

Theorem A.1. The limit of the coefficients from the partially saturated regression (2) is (β0, βA, βS , βH , βAS , βAH)t,

where

βA = n−1
n∑
i=1

E{Yi(1, Si, Hi)− Yi(0, Si, Hi)} = de,

βS =
n−1

∑n
i=1 πS,i(1− πS,i)E{Yi(0, 1, Hi)− Yi(0, 0, Hi)}

n−1
∑n
i=1 πS,i(1− πS,i)

,

βH =
n−1

∑n
i=1 πH,i(1− πH,i)E{Yi(0, Si, 1)− Yi(0, Si, 0)}

n−1
∑n
i=1 πH,i(1− πH,i)

,

βAS =
n−1

∑n
i=1 πS,i(1− πS,i)E{Yi(1, 1, Hi)− Yi(1, 0, Hi)− Yi(0, 1, Hi) + Yi(0, 0, Hi)}

n−1
∑n
i=1 πS,i(1− πS,i)

,

βAH =
n−1

∑n
i=1 πH,i(1− πH,i)E{Yi(1, Si, 1)− Yi(1, Si, 0)− Yi(0, Si, 1) + Yi(0, Si, 0)}

n−1
∑n
i=1 πH,i(1− πH,i)

,

where πA = pr(Ai = 1) is the marginal probability of being assigned to treatment, given by the weighted

average of the high and low saturation probabilities.

From Theorem A.1, we obtain five effects. The coefficient βA recovers exactly the direct effect defined

in (1). The coefficients βS and βH do not recover the effects we defined earlier; isntead, they correspond to a

reweighted average of the indirect effects with weights πS,i(1− πS,i) and πH,i(1− πH,i), respectively, known

as overlap weights in the literature (Li et al., 2018). These overlap indirect effects target the subpopulation

with good overlap in the corresponding exposure level.
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The second-order interaction terms yield two additional estimands. They correspond to overlap-weighted

versions of the marginal interaction factorial effects. For example, the coefficient βAS is an overlap-weighted

version of the interaction effect E{Yi(1, 1, Hi)−Yi(1, 0, Hi)−Yi(0, 1, Hi)+Yi(0, 0, Hi)}, which measures how

the direct effect varies across different levels of S while marginalizing over H.

B Proof

B.1 Proof of Theorem 4.1

The theorem largely follows from existing results in complex randomized experiments, such as Aronow and

Samii (2017); Leung (2022); Mukerjee et al. (2018), by defining pseudo potential outcomes using the weighting

matrix Γ and the original/centered potential outcomes. For demonstration, we showcase the derivation of

the asymptotic variance of the Horvitz–Thompson estimator for the average of potential outcomes at level

(a, s, h), which is given by

var

{
n−1

n∑
i=1

Ii(a, s, h) · γi(a, s, h)
πi(a, s, h)

Yi

}

= n−2
n∑
i=1

var{Ii(a, s, h)}γi(a, s, h)2Yi(a, s, h)2

πi(a, s, h)2

+n−2
∑
j ̸=i

cov{Ii(a, s, h), Ij(a, s, h)} · γi(a, s, h)γj(a, s, h)Yi(a, s, h)Yj(a, s, h)
πi(a, s, h)πj(a, s, h)

.

Using the variance formula for a Bernoulli variable, we have

var{Ii(a, s, h)} = πi(a, s, h){1− πi(a, s, h)}. (3)

Meanwhile, we can compute the covariance term between units i and j based on the definition:

cov{Ii(a, s, h), Ij(a, s, h)} = E{Ii(a, s, h)Ij(a, s, h)} − E{Ii(a, s, h)}E{Ij(a, s, h)}

= πij(a, s, h; a, s, h)− πi(a, s, h)πj(a, s, h). (4)

Equations (3) and (4) together lead to the definition of Λ(i,j)(a, s, h) and also complete the variance compu-

tation for the Horvitz–Thompson estimator.

We now derive the asymptotic variance of the Hájek estimator

Ŷ haj(a, s, h; Γ) =
n−1

∑n
i=1

Ii(a,s,h)γi(a,s,h)
πi(a,s,h)

Yi

n−1
∑n
i=1

Ii(a,s,h)γi(a,s,h)
πi(a,s,h)

/
n−1

∑n
i=1 γi(a, s, h)

.

Denote the numerator and denominator as:

An(a, s, h) = n−1
n∑
i=1

Ii(a, s, h) γi(a, s, h)

πi(a, s, h)
Yi(a, s, h),

S3



Bn(a, s, h) = n−1
n∑
i=1

Ii(a, s, h) γi(a, s, h)

πi(a, s, h)

/
n−1

n∑
i=1

γi(a, s, h).

Accordingly, we have E{An(a, s, h)} = n−1
∑n
i=1 γi(a, s, h)Yi(a, s, h) and E{Bn(a, s, h)} = 1. Denote the

corresponding target estimand under weighting regime Γ as Ȳ (a, s, h; Γ) = n−1
∑n
i=1 γi(a, s, h)Yi(a, s, h), by

Taylor expansion of the ratio An/Bn around Ȳ (a, s, h; Γ) = E(An)/E(Bn), we have

Ŷ haj(a, s, h; Γ)− Ȳ (a, s, h; Γ) =
1

E(Bn)

[
An − E(An)−

E(An)

E(Bn)
{Bn − E(Bn)}

]
+ op(n

−1/2).

The main term on the right hand side is equal to

n−1
n∑
i=1

Ii(a, s, h)− πi(a, s, h)

πi(a, s, h)
γi(a, s, h)Yi(a, s, h)

−n−1
n∑
i=1

Ii(a, s, h)− πi(a, s, h)

πi(a, s, h)
γi(a, s, h) ·

n−1
∑n
i=1 γi(a, s, h)Yi(a, s, h)

n−1
∑n
i=1 γi(a, s, h)

= n−1
n∑
i=1

Ii(a, s, h)− πi(a, s, h)

πi(a, s, h)
γi(a, s, h)Y

haj
i (a, s, h),

and therefore we have

Ŷ haj(a, s, h; Γ)− Ȳ (a, s, h; Γ) = n−1
n∑
i=1

Ii(a, s, h)− πi(a, s, h)

πi(a, s, h)
γi(a, s, h)Y

haj
i (a, s, h) + op(n

−1/2),

whose first order behaves like a Horvitz–Thompson estimator applied to the centered potential outcomes

Y haj
i (a, s, h). Using the previous derivation on asymptotic variance of the Horvitz–Thompson estimator, we

have the results in Theorem 4.1.

B.2 Proof of Theorem 4.2 and Corollary 5.1

The consistency result of the point estimators and variance estimators follow from Aronow and Samii (2017),

by the law of large numbers for weakly dependent random variables under the bounded degree and dependence

assumptions. The asymptotic normality follows from the central limit theorem form-dependent arrays (Chen

and Shao, 2004), where the dependence structure is determined by the network topology.
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B.3 Proof of Theorem A.1

The OLS regression estimators are given by β̂ = Ω−1
XXΩXY , where

ΩXX = n−1



n
∑n
i=1Ai

∑n
i=1 S̃i

∑n
i=1 H̃i

∑n
i=1AiS̃i

∑n
i=1AiH̃i∑n

i=1Ai
∑n
i=1A

2
i

∑n
i=1AiS̃i

∑n
i=1AiH̃i

∑n
i=1A

2
i S̃i

∑n
i=1A

2
i H̃i∑n

i=1 S̃i
∑n
i=1AiS̃i

∑n
i=1 S̃

2
i

∑n
i=1 S̃iH̃i

∑n
i=1AiS̃

2
i

∑n
i=1AiS̃iH̃i∑n

i=1 H̃i

∑n
i=1AiH̃i

∑n
i=1 S̃iH̃i

∑n
i=1 H̃

2
i

∑n
i=1AiS̃iH̃i

∑n
i=1AiH̃

2
i∑n

i=1AiS̃i
∑n
i=1A

2
i S̃i

∑n
i=1AiS̃

2
i

∑n
i=1AiS̃iH̃i

∑n
i=1A

2
i S̃

2
i

∑n
i=1A

2
i S̃iH̃i∑n

i=1AiH̃i

∑n
i=1A

2
i H̃i

∑n
i=1AiS̃iH̃i

∑n
i=1AiH̃

2
i

∑n
i=1A

2
i S̃iH̃i

∑n
i=1A

2
i H̃

2
i


and

ΩXY = n−1
(∑n

i=1 Yi
∑n
i=1AiYi

∑n
i=1 S̃iYi

∑n
i=1 H̃iYi

∑n
i=1AiS̃iYi

∑n
i=1AiH̃iYi

)t
.

Due to the demeaning step and the independence among Ai, S̃i, and H̃i, some off-diagonal values of the

expectation of the ΩXX matrix are zero. The diagonal values of ΩXX are:

E

(
n−1

n∑
i=1

A2
i

)
= πA,

E

(
n−1

n∑
i=1

S̃2
i

)
= n−1

n∑
i=1

πS,i(1− πS,i),

E

(
n−1

n∑
i=1

H̃2
i

)
= n−1

n∑
i=1

πH,i(1− πH,i),

E

(
n−1

n∑
i=1

A2
i S̃

2
i

)
= πAn

−1
n∑
i=1

πS,i(1− πS,i),

E

(
n−1

n∑
i=1

A2
i H̃

2
i

)
= πAn

−1
n∑
i=1

πH,i(1− πH,i).

The non-zero off-diagonal terms are

E

(
n−1

n∑
i=1

AiS̃
2
i

)
= πA

n∑
i=1

πS,i(1− πS,i),

E

(
n−1

n∑
i=1

AiS̃
2
i

)
= πA

n∑
i=1

πH,i(1− πH,i).
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Therefore,

E(ΩXX) = n−1



n nπA 0 0 0 0

nπA nπA 0 0 0 0

0 0
∑n

i=1 πS,i(1− πS,i) 0 πA

∑n
i=1 πS,i(1− πS,i) 0

0 0 0
∑n

i=1 πH,i(1− πH,i) 0 πA

∑n
i=1 πH,i(1− πH,i)

0 0 πA

∑n
i=1 πS,i(1− πS,i) 0 πA

∑n
i=1 πS,i(1− πS,i) 0

0 0 0 πA

∑n
i=1 πH,i(1− πH,i) 0 πA

∑n
i=1 πH,i(1− πH,i)


.

Taking the inverse, we have

E(ΩXX)−1 = n



(1−πA)−1

n
−(1−πA)−1

n
0 0 0 0

−(1−πA)−1

n

π−1
A

(1−πA)−1

n
0 0 0 0

0 0 (1−πA)−1∑n
i=1 πS,i(1−πS,i)

0 −(1−πA)−1∑n
i=1 πS,i(1−πS,i)

0

0 0 0 (1−πA)−1∑n
i=1 πH,i(1−πH,i)

0 −(1−πA)−1∑n
i=1 πH,i(1−πH,i)

0 0 −(1−πA)−1∑n
i=1 πS,i(1−πS,i)

0
π−1
A

(1−πA)−1∑n
i=1 πS,i(1−πS,i)

0

0 0 0 −(1−πA)−1∑n
i=1 πH,i(1−πH,i)

0
π−1
A

(1−πA)−1∑n
i=1 πH,i(1−πH,i)


.

Now we can compute the population mean of ΩXY . For the intercept coordinate, we have

E

(
n−1

n∑
i=1

Yi

)
= n−1

n∑
i=1

[πAE{Yi(1, Si, Hi)}+ (1− πA)E{Yi(0, Si, Hi)}] .

For the cross term between Yi and Ai, we have

E

(
n−1

n∑
i=1

AiYi

)
= πAn

−1
n∑
i=1

E{Yi(1, Si, Hi)}.

For the cross term between Yi and S̃i, we have

E

(
n−1

n∑
i=1

S̃iYi

)
= πAn

−1
n∑
i=1

πS,i(1− πS,i)E{Yi(1, 1, Hi)}+ (1− πA)n
−1

n∑
i=1

πS,i(1− πS,i)E{Yi(0, 1, Hi)}

−πAn−1
n∑
i=1

πS,i(1− πS,i)E{Yi(1, 0, Hi)} − (1− πA)n
−1

n∑
i=1

πS,i(1− πS,i)E{Yi(0, 0, Hi)}

= πAn
−1

n∑
i=1

πS,i(1− πS,i)E{Yi(1, 1, Hi)− Yi(1, 0, Hi)}

+(1− πA)n
−1

n∑
i=1

πS,i(1− πS,i)E{Yi(0, 1, Hi)− Yi(0, 0, Hi)}.

Similarly,

E

(
n−1

n∑
i=1

H̃iYi

)
= πAn

−1
n∑
i=1

πH,i(1− πH,i)E{Yi(1, Si, 1)− Yi(1, Si, 0)}
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+(1− πA)n
−1

n∑
i=1

πH,i(1− πH,i)E{Yi(0, Si, 1)− Yi(0, Si, 0)}.

For the rest of the two terms, we have

E

(
n−1

n∑
i=1

AiS̃iYi

)
= πAn

−1
n∑
i=1

πS,i(1− πS,i)E{Yi(1, 1, Hi)− Yi(1, 0, Hi)},

E

(
n−1

n∑
i=1

AiH̃iYi

)
= πAn

−1
n∑
i=1

πH,i(1− πH,i)E{Yi(1, Si, 1)− Yi(1, Si, 0)}.

Combining all the computations above, we conclude the results.
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