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1 Introduction

1.1 Overview

We congratulate the authors for their insightful discussion on the role of assumptions in causal
inference, particularly in the context of principal stratification estimands in clinical trials. Their
examination of the tension between scientific relevance and practical learnability is an important
contribution to the field. While acknowledging that the move toward model-free estimands is a
valuable step, the authors highlight the challenge of balancing scientific relevance with practical
learnability and emphasize the importance of thoroughly evaluating assumptions when identifying

causal effects. We agree with their focus on the plausibility of the assumptions and most of their

critiques on |Qu et al| (2020). However, we argue that principal stratification remains highly relevant

for formulating causal effects on subgroups defined by the potential values of post-treatment vari-
ables. We respectfully disagree with their critique of principal stratification estimands and advocate
for improvements in identification strategies and the use of sensitivity analyses. Additionally, we

highlight key distinctions between principal stratification and mediation analysis.
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1.2 Distinction between causal estimands and causal assumptions

Causal estimands and causal assumptions are two components of causal inference. The choice of
causal estimands should correspond to the scientific question of interest, while the choice of causal
assumptions should be guided by our understanding of the data-generating processes. Some causal
estimands are relatively straightforward to identify, even allowing for multiple identification strategies
under different sets of assumptions. In such cases, research may focus on developing the most efficient
estimators for those causal estimands. However, other causal estimands are more challenging to
identify, particularly when our understanding of the data-generating process is limited. In these

situations, point identification may not be possible, and we may only obtain bounds on the estimand

(e.g., [Zhang and Rubin] 2003} [Cheng and Small] 006} [Yang and Smalll R0T6). In some cases,

point identification is achieved by imposing additional assumptions, which may be introduced for
analytical convenience rather than being fully justified by our understanding of the data-generating
process. When relying on such assumptions, it is crucial to conduct sensitivity analyses to assess the

robustness of the results and evaluate the potential impact of violations of the assumptions ([Jiang

let al [2022} [Mattei et al.} [2025]).

2 Brief review of principal stratification

2.1 Why we need principal stratification

We first review the principal stratification strategy (Frangakis and Rubin] [2002)), the causal estimand

of interest, and the identification of the estimand. We follow the same notation as in

[and Van Lancker] (2025). Let 7' € {0,1} denote the binary treatment assignment, with 7' = 1 if

assigned to the treatment arm, and T' = 0 if assigned to the control arm, X denote the pre-treatment
covariates, and Y denote the outcome of interest. Denote A € {0,1} as the adherence indicator after
the treatment initiation, with A = 1 if the patient adhered to the assigned treatment until the
measurement of Y, and A = 0 if the patient did not adhere. Both A and Y are post-treatment
variables, therefore, under the potential outcome framework, they have potential values A(t) and
Y(t) for t = 0,1. The observed adherence status and outcome are A = T'A(1) + (1 — T)A(0) and
Y =TY(1)+ (1 —-T)Y(0), respectively.

Define the average treatment effect of the treatment assignment Ton Y as 7y = E{Y (1)—-Y(0)},



the intention-to-treat estimand. In clinical trials, the treatment T is randomly assigned to patients
with a known mechanism, therefore, 7y is identified as v = E(Y | T =1) - E(Y | T = 0) by
design if Y is measured for all patients, regardless of their adherence status. It is also known as the

treatment policy estimand proposed in [[CH E9 (R1)| (2019). However, in practice, there are at least

two main challenges. First, the intention-to-treat estimand may not ideally answer the clinically
relevant questions and have poor generalizability when the proportion of adherence is low, as well
as when the proportion of adherence changes dramatically in a future trial. Second, we may not be
able to measure the outcome of interest for patients who did not adhere to the treatment assigned,
for example, if they discontinued the study and dropped out.

To address these challenges, researchers have employed principal stratification and transferred

the goalpost to the principal causal effects, as suggested in [[CH E9 (R1)| (2019). Targeting the

principal stratification estimand, we classify the population of all patients into four strata according
to the joint value of {A(1), A(0)}. For a binary A, there are four principal strata. In this discussion,

we focus on the following principal causal effect:

m =E{Y(1)-Y(0)| A(1) =1, A(0) =1}, (1)

which represents the average causal effect of 1" on Y, within the subgroup of patients who always
adhere to the treatment assigned no matter which treatment arm they belong to.

If all non-adherence occurs immediately at treatment assignment, the problem reduces to a non-

compliance problem, where instrumental variable methods can be applied (Angrist et al.) [1996]).

However, in clinical trials, non-adherence is more complex, as it can occur at any time point be-
tween treatment assignment and outcome measurement. When non-adherence happens long after
treatment assignment, it is hard to believe in the exclusion restriction assumption, which requires
that the treatment assignment only affects outcome interest through adherence status. Thus, what
we address here is a more general form of non-adherence problem that is different from standard

non-compliance, as discussed in parts of the causal inference literature.



2.2 Classic identification results under the monotonicity and principal ignora-

bility assumptions

In this subsection, we present the classic identification assumptions and results commonly used
in the principal stratification literature. We discuss their implications, justifications, and possible

limitations. To identify 71 using observed data, we can invoke the following assumptions.

AsSsUMPTION 1 We impose the following assumptions:

(a) Randomization and overlap: T is conditionally independent of all potential values of the post-

treatment variables given X, and 0 < pr(T =1 | X) < 1 with probability 1.
(b) Monotonicity: A(1) > A(0).
(¢) Principal ignorability: Y (1)1LA(0) | A(1), X and Y (0)1LA(1) | A(0), X.

Assumption (a) is satisfied by design in clinical trials. The commonly used monotonicity As-

sumption b) helps with the identification of the principal strata (Jiang et al] [2022)). Here Assump-

tion [1[(b) imposes monotonicity on A(t), the potential adherence status under treatment ¢, which

is different from the standard monotonicity assumption applied to the treatment received indicator

(Angrist et al] [1996). In the context of clinical trials, Assumption [I(b) states that adherence under

the control arm is no greater than under treatment. It may be reasonable if the treatment is perceived
as beneficial, since individuals in the treatment arm may be more likely to adhere upon experiencing
better health improvements. However, if the treatment has side effects or leads to adverse events,
the opposite direction of monotonicity, A(1) < A(0), may be more reasonable, as adherence could
be easier under the control condition. In practice, adherence patterns may even reflect a mixture of
both. Whether and which monotonicity is reasonable depends on the specific context, and we do not
attempt to justify either universally. Instead, our primary objective in introducing it is to achieve
the identification of the joint distribution of A(1) and A(0) given the covariates X.

Assumption [I[c) requires that the conditional distribution of Y (1) are the same between two
principal strata {A(1) = 1,A(0) = 1} and {A(1) = 1, A(0) = 0} given the observed pre-treatment
variables ([(Jo and Stuart] R009} [Ding and Lu R017} [Feller et al] R017). In general, it is strong

and untestable. We recommend that researchers check what the assumption means even under a

simple linear structural model. For example, if Y (¢) follows linear models E{Y (t) | A(1), A(0), X} =



Bro + Br1A(t) + 85X without the A(1 —t) term for t = 0,1, the principal ignorability assumption

holds (Jiang and Ding| [2021]).

Under Assumption 711 is nonparametrically identified with various identification formulas

(Ding and Lul 017 [Jiang et al] [2022)):

m = E [po}(jj() (E(Y |A=1,T=1,X)-E(Y |A= 1,T:0,X)}]

B po(X) A T A 1T

B E{ Po pl(X)W(X)Y} E{Pol—F(X)Y}

- E[A(l_T)/p{l_“(X)}{E(Y|A:1,T:1,X)-E(Y|T:0,A:1,X)}],
0

where m(X) =pr(T =1 | X), p(X)=pr(A=1|T=¢tX),and p=pr(A=1|T =t) fort =0, 1.

2.3 Identification in |Qu et al.| (2020

Focusing on a similar set of causal estimands, [Qu et al| (2020) utilized additional information in

observed post-treatment variables, denoted as Z, with potential values Z(t) for ¢t = 0, 1, and observed

value Z =TZ(1)+(1—-T)Z(0). They imposed another set of conditional independence assumptions:

ASSUMPTION 2 Impose the following conditional independence assumptions:
(a) A(t)LL{Y (1),Y(0),Z(1 —¢t)} | Z(t), X, fort=0,1.
(b)) Y(t)LLZ(1 —t) | Z(t), X fort=0,1.
(¢) Z(1)1LZ(0) | X.

Under Assumption (a) and Assumption [2] [Qu et al] (2020) provided an identification formula,

for T11, as well as several other estimands. Assumption (b) is the principal ignorability assumption
imposed on Z(t) instead of A(t). By imposing Assumption [2a) and (c), [Qu_et al] (2020 avoided

the monotonicity assumption on A, but introduced interpretations that might be unrealistic in

practical applications, as discussed in [Vansteelandt and Van Lancker] (2025)). Assumptions 2(b) and

(c) together imply that Y (¢)1LZ(1 —¢) | X for ¢t = 0, 1, which also seems too strong. We will revisit

[Qu et al] (2020)’s setting in Section




3 What we agree with [Vansteelandt and Van Lancker]| (2025]) on

The authors highlight the importance of plausible assumptions for principal stratum estimands and
illustrate why Assumptions [2f(a) and (c) are unreasonable in some contexts. They stress the need
to go beyond merely stating identification assumptions by providing thorough interpretation and
critical assessment within the specific real-world application.

We fully agree that causal identification assumptions should be carefully evaluated within specific
applications, especially in medication applications where both the sign and the magnitude of the
treatment effect matter. Additionally, we acknowledge that identification assumptions in the prin-
cipal stratification setup, such as Assumptions [I] and [2] are typically strong and untestable, which
raises concerns about their practical plausibility. Thus, it is essential to be careful and transparent
when we consider principal stratification estimands.

That said, in many cases, the principal stratum-specified causal effect is the most relevant pa-
rameter of interest, and its identification inherently requires strong assumptions. Progress requires
making assumptions while carefully assessing their plausibility on a case-by-case basis. We must
be transparent about these assumptions, and avoiding them altogether seems a pessimistic view of
causal inference.

Additionally, since many identification assumptions are strong and untestable, sensitivity anal-
ysis must be an essential component for evaluating the robustness of causal conclusions. When the
assumptions cannot be directly tested with observed data, sensitivity analysis allows us to explore

how violations might affect the results. For instance, we can employ the sensitivity analysis frame-

work proposed in [Jiang et al.|(2022)) in principal stratification, which takes care of possible violations

of both Assumptions[I[b) and (c). In practice, downstream decision-making should consider not only
point estimates and inference under assumptions but also a broad range of sensitivity analyses to

ensure more informed and reliable conclusions.

4 What we disagree with [Vansteelandt and Van Lancker| (2025)) on

4.1 The critique of principal stratification estimands as a whole

While we acknowledge the authors’ concerns about principal stratification, we believe that their

rejection of these estimands is too broad. The principal stratification estimand remains useful when



used judiciously, as it provides clinically meaningful causal parameters (Frangakis and Rubin]| 2002}

[Rubin} 2006} [VanderWeele] 2011} [Mealli and Maftel, 2012} [Jiang and Ding] 2021} [Ding] 2024} Ly
2023]). The challenge lies not in the principal stratification estimand itself but in the choice

of identification assumptions. Thus, we should distinguish between the estimand itself and the
identification assumptions used in specific applications.

Rather than discarding it entirely, researchers should improve identification strategies and in-
corporate sensitivity analyses. We propose that instead of rejecting the use of the estimand, efforts
should go toward developing better diagnostic tools and making it more practical. That said, again,

we are not arguing that we should not examine the causal assumptions in [Qu et al] (2020]) critically.

Indeed, the causal assumptions for principal stratification are strong and untestable.
4.2 Mediation analysis versus principal stratification

In this subsection, we argue that the assumptions in mediation analysis are not necessarily more
plausible than those in principal stratification, and the choice between these frameworks should be
guided by the specific research question and data structure. We consider the general case where A(t)

is any intermediate variable throughout the subsection. The authors claim in Section 5.1 that

the cross-world independence assumptions used in mediation analysis tend to have greater

plausibility than those previously discussed.

However, we would like to point out that the principal stratification and mediation analysis have
fundamentally different focuses 2024} Chapter 28.3). Principal stratification examines hetero-
geneous treatment effects across subgroups defined by joint values of { A(1), A(0)}, whereas mediation

analysis treats A as a mediator in the causal pathway from T to Y. For example, the causal diagram

in Figure 1 of [Vansteelandt and Van Lancker] (2025]) indeed imposes causal relationships among T, A,

and Y, which may not exist considering the principal stratification estimand. In some applications,
A may not lie on the causal pathway from T to Y and may even be measured after the outcome Y.

We argue that many real-world problems in clinical trials are better suited to the principal
stratification estimand, which identifies causal effects on subgroups defined by the joint values of
{A(1), A(0)}. For example, 111 describes the treatment effect for a clinically meaningful subgroup.
Therefore, we disagree that mediation analysis provides a more appropriate framework for this

research question.



Moreover, mediation analysis involves a-priori counterfactual potential outcomes, whereas princi-
pal stratification does not. Although the principal ignorability Assumption (c) and the cross-world
independence assumption in mediation analysis both involve potential outcomes across different
treatment conditions, the cross-world counterfactual independence assumption in mediation anal-
ysis involves nested potential outcomes such as Y'(t, A(1 — t)), which do not correspond to any
hypothetical experiments. Therefore, we disagree with the claim that cross-world assumptions in

mediation analysis are less restrictive than principal ignorability (Baccini et al] R017} [Forastierd]
2018). While these assumptions are not mutually nested, we find the cross-world indepen-

dence assumption in mediation analysis conceptually less intuitive. See[Andrews and Didele7 (2021))

for a more comprehensive review of the cross-world independence assumption.
That said, we do not dismiss the value of mediation analysis, which has important applications

(VanderWeeld, RP015)). However, we believe that naively ranking the two frameworks in general can

be misleading, as their suitability depends on the specific research question.
4.3 Do not throw the baby out with the bathwater

In conclusion, while we acknowledge the challenges with principal stratification, especially in terms
of strong identification assumptions, it remains a valuable tool for understanding clinically mean-
ingful causal effects. Rather than discarding principal stratification, we should focus on improving
identification strategies and enhancing the robustness of the methods. By refining assumptions and
conducting sensitivity analyses, principal stratification can provide meaningful insights, especially
in clinical applications. Therefore, the priority should be to address its challenges and strengthen

its applicability in real-world settings.

5 Some further comments on [Qu et al.| (2020])

5.1 |Qu et al| (2020)) implicitly imposes the unnecessarily strong assumption:

conditional independence between A(1) and A(0) given X

In this subsection, we critically examine the identification results provided in [Qu et al] (2020)

and argue that their proposed identification formulas implicitly rely on a strong assumption: the
conditional independence between A(1) and A(0) given X, which is not justified by their stated

Assumption [2]



[Qu et al] (2020) claimed that 711 (which is their S, ) is identified under Assumptions [ while

we argue the identification formulas provided in their paper are only valid if they further assume

A(1)1LA(0) | X. In Section A.4 in the appendix, [Qu et al| (2020 wrote

The probability for a patient to be adherent to both treatments can be expressed in two

ways:

pr(4(0) =1, A1) = 1)
= B{pr(T=1]X)} " I(T=1,A=1) E{pr(A(0) = 1| X, Z(0)) | X}]  (2)

= E[{pr(T=0[X)} " I(T=0,A=1) B{pr(A(1) = 1] X, Z(1)) | X}].

Taking (2) as an example, the left-hand side of (2|) equals E[E{A(1)A(0) | X}], while the right-

hand side equals

A _ p|ETAQ) | X}
B P EAO | X.Z0)X]| = £ (X)
—E{A(0)|X}

E{A(0) | X}

= E[E{AQ1) | XJE{A(0) | X}].

Therefore, holds if A(1) and A(0) are uncorrelated conditional on X. With binary A, it is
equivalent to A(1)1LA(0) | X, which cannot be implied from the assumptions in [Qu et al] (2020).

Similar to the critiques in Section 3 of [Vansteelandt and Van Lancker] (2025)), A(1)1LA(0) | X is

another strong and untestable independence assumption on the joint potential values.

Generally, identification for the joint distribution {A(1), A(0)} is crucial for the identification of
principal causal effects. Rather than relying on the unnecessarily strong conditional independence
A(1)1LA(0) | X, we can consider alternative identification strategies. For instance, monotonicity

provides a viable approach to achieve identification of the joint when A is binary. Additionally,

copula methods offer a flexible way to model the joint distribution (Jiang and Ding} [2021)), allow-

ing researchers to incorporate domain knowledge in specifying reasonable copula functions and the

correlation coefficient.



5.2 Reinterpreting the role of adherence indicator with augmented notation: a

missing data perspective instead of principal stratification

In this subsection, we propose an augmented potential outcomes notation and discuss the role of
the adherence indicator, exploring various interpretations and causal estimands. The augmented
notation that depends jointly on treatment assignment ¢ and adherence status a makes it more
explicit what quantity is being targeted and what assumptions are needed for identification. This
clarity is particularly useful when distinguishing between treatment policy effects, hypothetical full-
adherence effects, and adherence as a mediating factor. Adopting this augmented notation helps
disentangle these perspectives and encourages greater transparency in specifying both the estimand
of interest and the role of the adherence indicator in the causal model.

Instead of the notation Y (¢) in [Qu et al] (2020]), we propose to augment the potential outcome

as Y (t,a), which depends not only on treatment assignment ¢ but also on adherence status a.
This notation explicitly accounts for the role of the adherence indicator. The observed outcome
is then given by Y = Y (T, A(T)) under the composition assumption that Y (¢, A(t)) = Y (¢) and
the consistency assumption that Y = Y (7"). This alternative notation allows us to clarify different
perspectives on the role of adherence indicator A.

First, under the treatment policy strategy, the target estimand is E{Y (1, A(1)) — Y (0, A(0))},

which is directly identifiable from the randomization of T" in a randomized controlled trial.

Second, [Qu et al| (2020]) treated outcomes observed after non-adherence as confounded and cen-

sored, suggesting their primary interest lies in the potential outcome under full adherence. This leads

to targeting the controlled direct effect E{Y (1,1) —Y(0,1)}, which corresponds to the hypothetical

strategy proposed in[ICH E9 (R1)|(2019]). Under our alternative formulation Y (¢, a), if A(¢t) = 0, the

outcome of interest is unobserved, effectively reframing the problem as one of missing data rather
than principal stratification. Here, the role of A(t) is a missing indicator.
If we assume a missing at random mechanism, i.e., A(¢t)1L{Y(1,1),Y(0,1)} | X, then the inclu-

sion of post-treatment variable Z(t) does not contribute additional identifying information. However,

in the application presented in [Qu et al| (2020]), the missing at random assumption appears unre-

alistic, which motivates their introduction of the post-treatment variable Z(t), hoping that further

conditioning on Z(t) restores the missing at random property, i.e., A(¢) 1LY (¢,1) | Z(t), X fort =0, 1.

10



Under this assumption, the controlled direct effect E{Y (1,1) — Y (0,1)} is identified by:

E{Y(1,1)} = E[E{Y(1,1)]X}]
— B[B{Y(1,1)|T =1,X}]
= EEE{YQ1)|ZT=1X}|T=1X)])

— EB{E(Y|A=1,2T=1,X)|T=1,X}],

with a similar identification strategy for E{Y(0,1)}. It is the g-formula if we view (¢,a) as the

time-varying treatment under the standard sequential ignorability assumption (Hernan et al] 000).

Third, adherence indicator A may itself lie on the causal pathway of T on Y, as illustrated in

the causal diagram in Figure 1 of [Vansteelandt and Van Lancker] (2025]). In this case, A is no longer

merely a missing indicator, but functions as another treatment factor, warranting consideration of
its causal effect on Y. For instance, E{Y (1,1) — Y (1,0)} depicts the average treatment effect of
adherence on outcome under treatment 7' = 1.

In practice, for units assigned to the treatment arm, there may be multiple versions of non-
adherence, each perhaps affecting outcomes in different ways. It challenges the stable treatment

unit value assumption when using the notation Y (¢,a). Related issues on the existence of a wide

variety of hypothetical scenarios are also discussed in ICH E9 (R1)| (2019). More fundamentally,

interventions on the adherence status can be ambiguous. A similar issue arises in the causal diagram

presented in Figure 1 of [Vansteelandt and Van Lancker (2025). By drawing an arrow from A to

Y, the causal diagram suggests an implicit possibility of intervening on adherence status. This
raises a series of questions: Should we allow for interventions on adherence status, and if so, how
do we conceptualize such interventions? Given that adherence status may not always be directly
manipulable, a more reasonable approach may be to consider stochastic intervention on adherence
status. While treating adherence as a treatment factor is an intriguing direction, further development

is needed.
5.3 Dealing with available data after non-adherence

In this subsection, we examine in detail how to appropriately handle available data after non-

adherence when considering the principal stratification estimand, using the notation defined in the

11



previous subsection.

For the principal stratum defined by {A(1) =1, A(0) = 1}, we have

B{Y(1,A(1)) = Y(0,A(0)) | A(1) =1,A(0) =1} = B{Y(1,1)-Y(0,1) | A(1) = 1, A(0) = 1}.

Patients in this principal stratum would adhere to treatment under both arms. Therefore, it does not
matter whether we use the treatment policy or the hypothetical strategy to deal with non-adherence
because they would adhere under both treatment arms. However, for the other subgroups discussed

in [Qu et al] (2020)), it is important to clearly state the strategy used to address non-adherence. For

example, consider the subgroup defined by A(1) = 1, with no restrictions on A(0) (denoted as Sy
in their paper). This group includes individuals who would adhere under treatment but may or may
not adhere under control. In this case, the choice of estimand becomes crucial, as it determines
how we should handle the available data after the non-adherence under control. When applying
the treatment policy strategy, the target estimand is E{Y (1, A(1)) — Y (0, A(0)) | A(1) = 1}, which
implies using all observed outcomes in the control group, regardless of the adherence status. It

equals

E{Y (1, A(1)) = Y(0,4(0)) | A(1) = 1}

= E{Y(1,1) | A(1) =1} = > E{Y(0,a) | A(1) = 1,A(0) = a}pr{A(0) = a | A(1) = 1}
a=0,1
— B{Y(1,1) = Y(0,0) | A1) = 1, A(0) = 0}pr{A(0) = 0 | A(1) = 1}

FE{Y(1,1) — Y(0,1) | A1) = 1, A(0) = L}pr{A(0) = 1| A(1) =1},

which is a weighted average of two different causal effects within two different principal strata.
In contrast, when applying the hypothetical strategy, the target estimand is E{Y (1,1) — Y (0,1) |
A(1) = 1}, the identification of which requires imputing the counterfactual outcome Y (0,1) for
patients in the control group who did not adhere. Overall, it is crucial to be explicit about both
the strategy for handling non-adherence and the corresponding target estimand, as these choices can

lead to substantially different scientific conclusions.

12



5.4 Defining principal strata based on adherence can lead to conceptual and

practical issues

In this subsection, we further examine the principal causal effect estimand and argue that it may
not be necessary to define principal strata based on adherence status. We also highlight that,
even when we define principal strata as such, some estimands may pose conceptual challenges. We
continue to use the notation Y (¢,a) from Section Of course, for a post-treatment variable A(t),

principal stratification can still be applied to target estimands such as principal treatment effect

E{Y(1,1) = Y(0,1) | A(1) = 1,A4(0) = 1} (Mattei et al] 2014a]b). However, we are critical on

whether considering principal strata defined based on {A(1), A(0)} is meaningful, particularly when
they are purely random given Z(t) and X, as required by Assumption (a). In such cases, it is
more informative and practically relevant to consider principal strata defined based on the joint
{Z(1),Z(0)}, which could provide a stronger connection to the heterogeneous treatment effect for

various biological or behavioral values. Past literature provides rich results on principal stratification

when Z is binary (Frangakis and Rubin] 2002} [Ding and Lu] R017} [Jiang et al] 2022]) and continuous

(|Lu et al.[ |2023|; |Zorzetto et al.|, |2021_L|).

Finally, even if one chooses to define principal strata based on {A(1), A(0)}, as done in [Qu et al]

, not all proposed estimands are conceptually reasonable. Among the four parameters in
([2020), only 41 is meaningful because Y (¢, 1) is only well-defined when A(t) = 1, and quantities
like Y'(¢,1) for A(t) = 0 correspond to the nested potential outcomes that do not correspond to
any hypothetical experiments. This is similar to the principal stratification in settings where the

post-treatment variable is an indicator of death and the outcome is only well-defined for surviving

patients (Zhang and Rubinl 2003} [Rosenbauml [2006} [Ding et al} [2011])). For example, consider the

proposed estimand E{Y(1,1) — Y (0,1) | A(1) = 1}. The subgroup defined by A(1) = 1 is the
combination of two principal strata: {A(1) =1, A(0) = 1} and {A(1) =1, A(0) = 0}. Consequently,
E{Y(1,1)-Y(0,1) | A(1) = 1} is a weighted average of the treatment effects across the two principal
strata. However, since Y (¢, 1) is only well-defined when A(t) = 1, attempting to identify or estimate

E{Y(0,1) | A(1) =1, A(0) = 0} is not reasonable.

13



5.5 Did |Qu et al.| (2020 use principal stratification appropriately?

In summary, when A represents adherence status, whether we should view A as a missing indicator is
questionable as discussed in Sections[5.2] Furthermore, even if we do treat A as a missing indicator,
the information provided by 7y is limited, which could lead to challenges in drawing broader causal

conclusions, as discussed in Section Overall, [Qu et al] (2020) could have strengthened their

analysis by more clearly stating their causal framework, specifically, by clarifying how they concep-
tualize the role of adherence and how this conceptualization informs the interpretation of principal
strata defined by adherence status. Without a clear formulation of the causal estimands, proceeding
with identification and estimation for the principal causal effects becomes problematic. This lack
of clarity raises concerns about the appropriate use of the principal stratification estimand in their

analysis.

6 When does additional post-treatment variable help in principal

stratification?

In the classic setting of average treatment effect estimation, where the parameter of interest is 7v =
E{Y (1) =Y (0)}. If the observed post-treatment variables are predictive of the outcome, adjusting
for those observed post-treatment variables might seem appealing. However, current literature has
reached the consensus that such adjustments are problematic even when these variables are predictive
of Y. A similar intuition applies in principal stratification. When the parameter of interest is the
principal causal effect, 711 = E{Y (1) =Y (0) | A(1) = A(0) = 1}, and the principal strata are defined
based on joint values {A(1), A(0)}, other post-treatment variables are unlikely to be helpful unless
we make further strong and often untestable assumptions.

Next, consider the case when we target at the parameter E{Y (1) — Y (0) | A(1) = 1}, as in
. In their analysis, they imposed the principal ignorability assumption on Z but not
on A. Principal ignorability for A assumes A(¢t) 1LY (1 —t) | A(1 —t),X. Consider the scenario
where we suspect that A(1 — t) does not provide enough information to achieve independence, but
we believe Z(1 —t) does. In this case, we impose the assumption A(¢) 1LY (1 —¢) | Z(1 —t),X. To
identify E{Y (1) —Y(0) | A(1) =1} = E[E{Y (1) =Y (0) | A(1) =1,X} | A(1) = 1], we need the
identification for E{Y (0) | A(1) = 1, X}, E{Y (1) | A(1) = 1, X}, and the conditional distribution
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of X in the subgroup A(1) = 1. Identification for the latter two quantities follows directly from

randomization. Consider E{Y (0) | A(1), X'}, which can be written as

E{Y(0) | A(1). X} = E[E{Y(0)| A1), Z(0),X} | A(1), X]
— E[E{Y(0)] Z(0), X} | A(1),X]
— B(BIE{Y(0) | Z(0), X} | A(1), Z(1), X] | A(1), X)

— BEE{Y(0) | 2(0). X} | Z(1), X] | A1), X),

where the last equality holds only if we further assume A(¢)1LZ(1 —t) | Z(t), X, as part of As-
sumption [2a). Identifying E[E{Y(0) | Z(0), X} | Z(1), X] requires identifying Z(0) | Z(1), X,
which essentially requires identification of the joint distribution {Z(1),Z(0)} given X. When Z is
a one-dimensional binary variable, like in the standard principal stratification setup, the joint dis-
tribution of Z(1) and Z(0) is identified under randomization, provided we impose assumptions such
as monotonicity. When Z is a multi-dimensional variable, the joint distribution of {Z (1), Z(0)} is

not identified even with the monotonicity assumption. This is likely the reason why [Qu et al] (2020))

imposed the conditional independence between Z(0) and Z(1) given X.

Thus, unless we have better domain knowledge to specify the joint distribution between {Z(1), Z(0)}
compared with {A(1), A(0)}, the role of the post-treatment variable Z is limited. However, if we are
able to identify the joint {Z(1),Z(0)}, then E{Y (1) — Y (0) | A(1) = 1} can be identified and Z(t)
would be indeed helpful.

Identification in principal stratification is often challenging without additional strong assump-

tions. A powerful strategy is to leverage auxiliary variables to improve the identification (Ding et al.

011} [Mattei and Mealli, 2011} [Mealli and Pacini), 2013} [Yang and Smalll, R016} [Yang and Ding] 2018}

[Jiang and Ding} [2021]). Therefore, incorporating post-treatment variables to improve identification

in principal stratification seems an appealing idea. |Qu et al| (2020) made an interesting attempt to

tackle this challenge. However, their attempt showed the fundamental difficulties associated with
this approach. Additional post-treatment variables can only aid identification under strong and
often untestable assumptions. Given these challenges, we remain skeptical about the applicability
of such additional post-treatment variables, as they may not improve identification results without

imposing additional strong assumptions.
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That said, we are open to future research on leveraging additional post-treatment variables to
improve principal stratification analysis, provided that additional assumptions are carefully justified

by scientific knowledge in concrete applications.
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