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Potential outcome framework
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Potential outcome framework.

Potential outcomes: Y;(1) and Y;(0).

Binary treatment: Z;.

Observed outcome: Y; = Y;(Z;) = ZY;(1) + (1 — Z) Y;i(0).
Stable unit treatment values assumption.

Super population regime: independently and identically
distributed {X;, Z;, Y;(1), Y;(0) : i =1,...,n}.
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Parameter of interest

» Causal parameter of interest: 7 = E{Y(1) — Y(0)}, the
average treatment effect, decomposes into

r = [E(Y|Z=1p(Z=1)+E{Y(1)| Z=0}pr(Z = 0)]
—[E{Y(0) | Z = 1}pr(Z = 1)+ E(Y | Z = 0)pr(Z = 0.
» Fundamental challenge of causal inference: to estimate the

counterfactual means E{Y(1) | Z =0} and E{Y(0) | Z = 1}.

» Randomization leads to obvious identification, but in
observational studies?
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Identification under unconfoundedness

>

>

Unconfoundedness assumption: Z1L{Y'(1), Y(0)} | X
(Rosenbaum and Rubin, 1983).

Under this assumption,
E{Y(1)|Z2=1,X}=E{Y(1)| Z=0,X}, thus T is
nonparametrically identified.

Two identification formulas:

7 = E{p(X)— po(X)}

= {0 10 )

where
> i (X)=E(Y|Z=1,X)and uo(X)=E(Y | Z=0,X):
conditional expectation of outcomes;
> e(X) =pr(Z =1|X): propensity score.

Implicitly assume overlap: 0 < e(X) < 1.
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Estimation under unconfoundedness

» Estimators corresponding to the two identification formulas:
n
78 = by (X)) — po(Xi)},
i=1

ht N~ [ZY (=Z)Y
;{@(X') 1—&(X;) }’

1

>
I

where é(X;) and [i,(X;) are fitted propensity score and
outcome models.
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Estimation under unconfoundedness

Doubly robust estimator by combining both models (Bang
and Robins, 2005):

é(Xi) 1—é(X;)

sreg | 1 Z": [Z,- {Yi— (X))} (11— 2Z){Yi— fio(X)}

i=1
Modifies 78 by inverse propensity score weighted residuals.

Consistent to 7 if either outcome models or propensity score
model is correctly specified.
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Sensitivity analysis

» Unconfoundedness assumption: untestable, cannot use data
to validate.

» Existence of unmeasured confounding possibly overturns an
observed association between the treatment and outcome.
» Hidden confounder U:
U

N

P Sensitivity analysis: assess the impact of U; how strong the
unmeasured confounding needs to be to overturn the observed
association.

A
Source: Ding (2024).
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Sensitivity analysis

>

Parametric models to assess the impact of U on the
estimation of 7 (Rosenbaum and Rubin, 1983; Lin et al.,
1998; Imbens, 2003).

Sensitivity analysis to test the sharp null hypothesis of no
unit-level causal effects in matched-pair observational studies
(Rosenbaum, 1987).

E-value: sensitivity analysis for causal estimates based on risk
ratios (Cornfield et al., 1959; Ding and VanderWeele, 2016;
VanderWeele and Ding, 2017).

Sensitivity analysis methods for the inverse propensity score
weighting estimator (Zhao et al., 2019; Dorn and Guo, 2022).

Useful for specific estimation or testing strategies.

Deal with the standard estimators 778, #ht gnd #dr
simultaneously?
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|dentification challenge revisit: two extreme solutions

T = [E(Y|Z=1)pr(Z=1)+E{Y(1) | Z=0}pr(Z =0)]

—[E{Y(0) | Z=1}pr(Z=1)4+ E(Y | Z=0)pr(Z =0)].

» Unconfoundedness assumption: Z1L{Y (1), Y(0)} | X.

E{Y(1)| Z=1,X} = E{Y(1)|Z=0,X},
E{Y(0)|Z=1,X} = E{Y(0)]|Z=0,X}.

» Very restrictive—assumes the two treatment groups have
identical conditional means.
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|dentification challenge revisit: two extreme solutions

T = [E(Y|Z=1pr(Z=1)+E{Y(1) | Z=0}pr(Z =0)]
—[E{Y(0) | Z=1}pr(Z=1)+ E(Y | Z=0)pr(Z = 0)].

> Partial identification method:
> Assume the potential outcomes are bounded between [/, u].

» E{Y(1)} has lower bound
E(Y|Z=1)pr(Z=1)+ Lpr(Z =0)
and upper bound
E(Y|Z=1)pr(Z =1)+ upr(Z =0).

» Similar lower and upper bounds for E{Y(0)}, leading to
bounds for 7.

» Problem: bounds are always too wide to provide valuable
causal information.

» Is there a midground?
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Sensitivity analysis with unmeasured confounding

vvvyyy

Define sensitivity parameters:

E{y(1)| Z=1,X} _
E{Y(1)|Z=0,X}

E{Y(0)| Z=1,X}
E{Y(0)|Z=0,X}

2;‘1()()7

£1(X) and go(X): two sensitivity parameters.
Quantifies the violation of the unconfoundedness assumption.
£1(X) = €o(X) = 1: the unconfoundedness assumption.

First fix them to obtain the corresponding estimators and then
vary them within a range to obtain a sequence of estimators.

E()(X).
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|dentification and estimation under sensitivity analysis

Outcome regression

» With known £1(X) and go(X),

E(Y()|Z=0} = E{u(X)/z2(X)| Z =0},
E(Y(0)|Z=1} = E{mo(X)eo(X)|Z=1}.

» Estimator:

n

= Y {Zn(X) + (1 - Z)ja(Xi) /e (X))
i=1

—n! Z {Zifo(Xi)eo(Xi) + (1 = Zj)fo(Xi)} -
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|dentification and estimation under sensitivity analysis

Inverse propensity score weighting

» With known £1(X) and go(X),

E{Y(1)} = E{
E(Y(0)} = E{WO(X)“ZY},

where
wy (X) = e(X)+{1—e(X)}/e1(X), wo(X) = e(X)eo(X)+1—e(X).

» Estimator:

n n

B zY, (1-2)Y;
~ht 1 § : ~ ro 1 2 : ~ i) T
1= 1=
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|dentification and estimation under sensitivity analysis

» When £1(X) = go(X) = 1, reduces to the unconfoundedness
assumption. Recover previous results.

> Motivates a combined strategy: doubly robust estimation
(Bang and Robins, 2005; Bickel et al., 1993).

@ Outcome regression
= p P {Zin(X) + (1 - Z)n(X) (X))
Doubly robust @ =,
=01 " {Zifio(Xi)eo(Xi) + (1 — Z)o(Xi)} -
i=1

® IPW

% )2 -lsz(x A=z
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Efficient influence function

» Under our definition of sensitivity parameters, the efficient

influence functions for E{Y'(1)} and E{Y(0)} are respectively

a2 12 eimx)
¢1 = 1(X)6(X)Y e(X)gl(X) E{Y(l)}7

do = wo(X) 1-7Z y_{e(X)—Z}Mo(X)EO(X)

= e(X) ey O

so the efficient influence function for 7 is ¢1 — ¢o.
» An estimator constructed based on the EIF:

e ~ ooy ZiYi {2 — &(Xi)} i (Xi)
s IZ[W“X’)@(X» &X)er (%) }

n

Sty [v“v (X;)(l —Z)Y;  {&(Xi) — Zi} uu(Xi)eo(Xi)

|V 8(x)) 1—8(X;)

» Can be written as modifications of 7P and #ht,

|
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Double robustness and semiparametric efficiency

a1 ZiYi  {Zi — é(Xi)} i (Xi)
e RX0F (x,) )]
: ~Z)Yi {e(X) — Z} fn(X)z0(X)
N e ok

» Double robustness: consistent if either the propensity score or
the outcome model is correctly specified.
» Semiparametric efficiency bound is achieved with

1. consistency of both models,
2. mild requirements on their convergence rates.
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Implementation—calibration of sensitivity parameters

» Observed data do not provide information on sensitivity
parameters.
» How can we make meaningful progress?
» A standard strategy: leave one covariate out.
» Pretending an observed covariate is an unmeasured

confounder.
> Assume ignorability Z1L{Y(1), Y(0)} | X and calculate

CE{Y(2) | Z=1,X}

ex(Xj) = E{Y(2)|Z=0,X,} (

z=0,1).

> Use the range of £,(X_;) to specify the range of
(e1(X), £0(X)).
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Sensitivity parameters: vary them with covariates or not

» Our theory allows for the dependence of sensitivity parameters
on X.
» Complicated in implementation.
» Not easy to visualize the sensitivity analysis results.

» Practically, specify (£1(X),c0(X)) = (€1,¢€0) independent of
X

» Point estimates are monotonic in €1, £p: easy to interpret.
» For non-negative outcomes: can also be interpreted as the

worst-case result even with (g1(X), (X)) depending on X.
» Formal result in the paper.
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Demo with an example

» Re-analyze the observational study in Bazzano et al. (2003):
whether cigarette smoking has a causal effect on
homocysteine levels.

» Elevation of homocysteine level is a risk factor for
cardiovascular disease.

» Data: the U.S. National Health and Nutrition Examination
Survey 2005- 2006.

» Observed covariates: gender, age, education level, body mass
index (BMI), and poverty.

» 74 for 7: 1.48 with a 95% confidence interval (0.78, 2.18).

» Unobserved confounders: genotype?
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Demo with an example — visualization based on 7
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» Point estimates as a function of (1, £o).

» Plot maximums of £,(X_;) for observed covariates.

dr
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Extension to nonlinear causal parameters

» A more general class of nonlinear causal parameters g(f1, 10)-

» Previous results: g(u1, o) = 1 — Ho-
P Binary outcomes: the causal risk ratio and the causal odds
1

ratio,
1 _
RR=— and OR= M
Ho po/ (1 — o)

> Plug-in estimators g(fi3, fig) for * € {pred, prod, ht, dr}.
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Extension to bias-corrected matching estimator

| 2

>

Matching: impute the missing counterfactual Y;(0) for Z; =1
by finding M nearest neighbors of / in the control group.

Use the average observed outcomes of the M nearest
neighbors as the imputed value of the counterfactual Y;(0).
Similar procedure for Y;(1).

Matching-based estimator: average of the imputed individual
treatment effect. Generally inconsistent (Abadie and Imbens,
2006).

Abadie and Imbens (2011) proposed a bias-corrected version
of the matching estimator by estimating the conditional
outcome models p,(X) and combining it with the original
matching estimator.
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Extension to bias-corrected matching estimator

> Rewrite the bias-corrected matching estimator as (Lin et al.,
2023):

fbe = Areg+n—12{ K"l/’(X)}Z;{Yi—ﬂl(Xi)}

_,,1; {1 N MM ’)}(1 ~ Z){Yi - (X))},

where M is the fixed number of matches for each observation
and K7;(X;) is the number of matched times of unit /i in
treatment group z, z € {0,1}.

26/32



Extension to bias-corrected matching estimator

» Under our sensitivity analysis framework, the bias-corrected
matching estimator:

7/=I\b/;: — %pred

i1 (Xi) }

)
- Z; "/’T’gO(X;)(l ~ Z){Yi — po(Xi)}-

» Lin et al. (2023) views matching as a nonparametric method
of estimating the propensity score. We essentially use
1+ K (X;))/M and 1+ K%(X;)/M to estimate 1/e(X;) and
1/{1 — e(X;)}, respectively.
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Extension to multi-level treatment

» Observational studies with a multi-level treatment,
Zed{l,...,K}.

» Each unit has K potential outcomes {Y(1),..., Y(K)}
corresponding to the K treatment levels.

» Causal parameters of interest: comparisons of potential
outcomes

K
Te=> aE{Y(k)},
k=1

where Zle ck =0.
» For any two treatment levels k and /, the sensitivity
parameters:

E{Y(K)| Z =k, X}

WX = Eyvm =X
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Extension to multi-level treatment
» Identification:

K
- _ yX)
E{Y(k)} = EE{:L(Z_I)&(,/(X)}
K e(X) U(Z=kY
;E{ek/X ex(X) }7

where
» e (X) =pr(Z = k| X): the generalized propensity score
(Imbens, 2000; Imai and Van Dyk, 2004);
> p(X) = E{Y | Z =k, X}: conditional outcome mean.

» Estimation:
n K
Adr Areg -1 e/ - ){ ( )}
Pk = +n ZZ ( Dew(X )
i=1 |=1
K
p o= Y ani
k=1
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Other extensions in the paper

> Hajek-type weighting estimators.

P> Average treatment effect on the treated:
w=E{Y(1)-Y(0) | Z=1} =E(Y |Z=1)—E{Y(0) | Z=1}.
» Survival outcomes under right-censoring:
7(t) = S1(t) — So(t),

where S,(t) = pr{Y(z) > t} denotes the potential survival
functions for z € {0,1}.
» Controlled direct effect.

» Discussion on another sensitivity parameter, difference scale.
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Summary

v

Flexible sensitivity analysis framework.

v

Simultaneously deal with weighting, outcome regression, and
doubly robust estimators.

v

Only requires simple modifications of the standard estimators.
» Extends to many other causal inference settings.

» Easy to implement — R package saci.
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Thank you very much!

ArXiv: https://arxiv.org/abs/2305.17643
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More equivalent forms for 7 with outcome regression

#red = I ZYi+ (1 - Z)pa(X5) fe1(Xi)}
i=1
—n 1> {Zifin(X)eo(X:) + (1 — Z)) i},
i=1

and

el = ST Zi (X)) + (1 - Z)(X0) /e (X))}

i=1

12{2 fio(Xi)eo(Xi) + (1 — Z))fio(Xi)} -
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More equivalent forms for 79

— | a(X) é(Xx)
N n A Zl\\}l R 1-— Zi ’V/I
= #Prol 4 pt Z{ 1(Xi)é(Xi) N WO(X')(l - é())<i) } ’
i=1
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